It has been established that biosurfactants, microbial preparations, natural sorbents, and oxidants increase the content of photosynthetic pigments in rye when grown on oil-contaminated soils. Developed an integrated approach that contributes to increasing plants' adaptive capacity, neutralizing the negative impact of the environment. Proposed methods are promising for the phytoremediation of oil-contaminated soils and damage as a result of military operations.
[1] Sharma, K., Shah, G., Singhal, K., & Soni, V. (2024). Comprehensive insights into the impact of oil pollution on the environment. Regional Studies in Marine Science, 74, 103516. DOI: 10.1016/j.rsma.2024.103516
[2] Devatha, C. P., Vishnu Vishal, A., & Purna Chandra Rao, J. (2019). Investigation of physical and chemical characteristics on soil due to crude oil contamination and its remediation. Applied Water Science, 9, 89. DOI: 10.1007/s13201-019-0970-4
[3] Vigil, T. N., Felton, S. M., Fahy, W. E., Kinkeade, M. A., Visek, A. M., Janiga, A. R., Jacob, S. G., & Berger, B. W. (2024). Biosurfactants as templates to inspire new environmental and health applications. Frontiers in Synthetic Biology, 2, 1303423. DOI: 10.3389/fsybi.2024.1303423
[4] Jahan, R., Bodratti, A. M., Tsianou, M., & Alexandridis, P. (2020). Biosurfactants, natural alternatives to synthetic surfactants: physicochemical properties and applications. Advances in Colloid and Interface Science, 275, 102061. DOI: 10.1016/j.cis.2019.102061
[5] Jimoh, A. A., & Lin, J. (2019). Biosurfactant: A new frontier for greener technology and environmental sustainability. Ecotoxicology and Environmental Safety, 184, 109607. DOI: 10.1016/j.ecoenv.2019.109607
[6] Karpenko, O., Banya, A., Baranov, V., Novikov, V., & Kołwzan, B. (2015). Influence of biopreparations on phytoremediation of petroleum-contaminated soil. Polish Journal of Environmental Studies, 24, 2009–2015. DOI: 10.15244/pjoes/42672
[7] Banya, A. R., Karpenko, O. Y., Lubenets, V. I., Baranov, V. I., Novikov, V. P., & Karpenko, O. V. (2015). Influence of surface-active rhamnolipid biocomplex and ethylthiosulfanilate on growth and biochemical values of plants in the oil contaminated soil. Biotechnologia Acta, 8(5), 71–77. DOI: 10.15407/biotech8.05.071
[8] Yaremkevych, O., Fihurka, O., Banya, A., Shvets, V., Nakonechna, A., Karpenko, O., Bilushchak, H., Karpenko, O., Novikov, V., & Lubenets, V. (2020). Effect of thiosulfonate-biosurfactant compositions on plants grown in oil polluted soil. Environmental Engineering and Management Journal, 19, 2003–2012. DOI: 10.30638/eemj.2020.189
[9] Sui, X., Wang, X., Li, Y., & Ji, H. (2021). Remediation of petroleum-contaminated soils with microbial and microbial combined methods: advances, mechanisms, and challenges. Sustainability, 13(16), 9267. DOI: 10.3390/su13169267
[10] Varjani, S. J. (2017). Microbial degradation of petroleum hydrocarbons. Bioresource Technology, 223, 277–286. DOI: 10.1016/j.biortech.2016.10.037
[11] Koshlaf, E., & Ball, A. S. (2017). Soil bioremediation approaches for petroleum hydrocarbon polluted environments. AIMS Microbiology, 3(1), 25–49. DOI: 10.3934/microbiol.2017.1.25
[12] Gote, M. G., Dhila, H. H., & Muley, S. R. (2023). Advanced synthetic and bio-based sorbents for oil spill cleanup: a review of novel trends. Natural Environment and Pollution Technology, 22(1), 39–61. DOI: 10.46488/NEPT.2023.v22i01.004
[13] Liu, Y., Biswas, B., Hassan, M., & Naidu, R. (2024). Green adsorbents for environmental remediation: synthesis methods, ecotoxicity, and reusability prospects. Processes, 12(6), 1195. DOI: 10.3390/pr12061195
[14] Wyszkowska, J., Borowik, A., Zaborowska, M., & Kucharski, J. (2023). The usability of sorbents in restoring enzymatic activity in soils polluted with petroleum-derived products. Materials (Basel, Switzerland), 16(10), 3738. DOI: 10.3390/ma16103738
[15] Dasi, E., Rudmin, M. A., & Banerjee, S. (2024). Glauconite applications in agriculture: a review of recent advances. Applied Clay Science, 253, 107368. DOI: 10.1016/j.clay.2024.107368
[16] Wang, W.-T., Wu, C.-H., Wang, Y.-H., & Zhao, J.-L. (2011). Characterization and bentonite amendment of oil contaminated soils. International Symposium on Water Resource and Environmental Protection, 1844–1846. DOI: 10.1109/ISWREP.2011.5893611
[17] Kong, L., Gao, Y., Zhou, Q., Zhao, X., & Sun, Z. (2018). Biochar accelerates PAHs biodegradation in petroleum-polluted soil by biostimulation strategy. Journal of Hazardous Materials, 343, 276–284. DOI: 10.1016/j.jhazmat.2017.09.040
[18] Kloss, S., Zehetner, F., Wimmer, B., Buecker, J., Rempt, F., & Soja, G. (2014). Biochar application to temperate soils: effects on soil fertility and crop growth under greenhouse conditions. Journal of Plant Nutrition and Soil Science, 177(1), 3–15. DOI: 10.1002/jpln.201200282
[19] Walawska, B., Gluziłska, J., Miksch, K., & Turek-Szytow, J. (2007). Solid inorganic peroxy compounds in environmental protection. Polish Journal of Chemical Technology, 9, 68–72. DOI: 10.2478/v10026-007-0057-0
[20] Małachowska-Jutsz, A., & Niesler, M. (2015). The effect of calcium peroxide on the phenol oxidase and acid phosphatase activity and removal of fluoranthene from soil. Water Air Soil Pollution, 226, 365. DOI: 10.1007/s11270-015-2632-y
[21] Mituniewicz, T., Piotrowska, J., Sowińska, J., Mituniewicz, E., Iwańczuk-Czernik, K., & Wójcik, A. (2016). Effect of calcium peroxide (CaO2) addition to poultry litter on the parameters of its physicochemical, microbiological and fertilising quality. Journal of Elementology, 21(4), 1327–1341. DOI: 10.5601/jelem.2016.21.1.1056
[22] Dubey, R. S. (2018). Photosynthesis in plants under stressful conditions. In Handbook of Photosynthesis (pp. 629–649). CRC Press. DOI: 10.1201/9781315372136-34
[23] Musienko, M. M., Parshikova, T. V., & Slavniy, P. S. (2001). Spectrophotometric methods in the practice of physiology, biochemistry and ecology of plants. Fitosotsiotsentr.
- Щоб додати коментар, увійдіть або зареєструйтесь