Study of Gas-Dynamic Throttle Elements as Sensors for Nanotechnology Processes

The Innovations, Nanotechnologies, and Catalysis in the Chemical and Food Industries
pp.
173-179
Abstract

On the basis of experiments for air, the dependence of the flow coefficient α of the watchstones as throttles on the diameter of their passage hole was obtained. The deviation of the calculated value of α from the experimentally determined value is 0.45 %. Also, for a throttle with a diameter of 0.083 mm, the dependence of α for different types of gases was obtained. The use of the obtained dependencies will improve the characteristics of the designed sensors for nanotechnology process control systems.

Author (co-authors)
First name Last name Institutional affiliation E-mail Phone number ORCID ID Academic status, position Institution address Author contribution(s) Institutional affiliation
Ivan
Stasiuk
ivan.d.stasiuk@lpnu.ua
12 Stepana Bandery St.
Conceptualization
Writing – Original Draft Preparation
Lviv Polytechnic National University
Ihor
Dilai
divlv@ukr.net
12 Stepana Bandery St.
Methodology
Writing – Original Draft Preparation
Lviv Polytechnic National University
Roman
Brylynskyi
roman.b.brylynskyi@lpnu.ua
12 Stepana Bandery St.
Resources
Visualization
Lviv Polytechnic National University
Solomiia
Markiv
solomiia.markiv.av.2022@lpnu.ua
12 Stepana Bandery St.
Investigation
Writing – Review & Editing
Lviv Polytechnic National University
References

[1] The 12th International Gas Analysis Symposium & Exhibition (GAS 2024). (2024). Porte de Versailles, Paris, France. Retrieved from https://www.gasanalysisevent.com/images/gasanalysis/docs/GAS2024-Fullprogramme.pdf

[2] Arseniev, D. G., & Aouf, N. (2023). Cyber-Physical Systems and Control II. Springer. https://link.springer.com/book/10.1007/978-3-031-20875-1

[3] Arseniev, D. G., Overmeyer, L., Kälviäinen, H., & Katalinić, B. (2020). Cyber-Physical Systems and Control. Springer. https://link.springer.com/book/10.1007/978-3-030-34983-7

[4] GAS Analysis 2022 Conference (GAS 2022). (2022). Paris, France. Retrieved from https://www.gasanalysisevent.com/programme/2022-programme

[5] Teplukh, Z., Dilai, I., Stasiuk, I., Tykhan, M., & Kubara, I.-R. (2018). Design of linear capillary measuring transducers for low gas flow rates. Eastern-European Journal of Enterprise Technologies, 6(5 (96)), 25–32. DOI: 10.15587/1729-4061.2018.150526

[6] Dilay, I., Teplukh, Z., Brylyns'kyy, R., & Kubara, I.-R. (2016). Development of gas dynamic linear systems for setting low pressures. Eastern-European Journal of Enterprise Technologies, 4(7-82), 30–36. DOI: 10.15587/1729-4061.2016.75231

[7] Słomińska, M., Konieczka, P., & Namieśnik, J. (2014). New developments in preparation and use of standard gas mixtures. TrAC Trends in Analytical Chemistry, 62, 135–143. DOI: 10.1016/j.trac.2014.07.013

[8] Dilay, I., Teplukh, Z., Tykhan, M., Stasiuk, I., & Kubara, I.-R. (2017). Effect of external pressures in dynamic gas mixers. Eastern-European Journal of Enterprise Technologies, 4(5-88), 59–65. DOI: 10.15587/1729-4061.2017.26256

[9] Haerri, H.-P., Mace, T., Walden, J., Pascale, C., Niederhauser, B., Wirtz, K., et al. (2017). Dilution and permeation standards for the generation of NO, NO₂ and SO₂ calibration gas mixtures. Measurement Science and Technology, 28(3), 035801 (17 pp). DOI: 10.1088/1361-6501/aa543d

[10] Dilay, I., Teplukh, Z., & Vashkurak, Y. (2014). Basic throttling schemes of gas mixture synthesis systems. Eastern-European Journal of Enterprise Technologies, 4(8), 39–45. DOI: 10.15587/1729-4061.2014.26257

[11] Ivashchuk, O. (2017). Catalytic intensification of the cyclohexane oxidation. Chemistry & Chemical Technology, 11(4), 430–436. DOI: 10.23939/chcht11.04.430

[12] Udd, E. (2024). Fiber Optic Sensors: An Introduction for Engineers and Scientists (3rd ed.). Wiley. https://www.ravenbookstore.com/book/9781119678786

[13] Jackson, R. G. (2019). Novel Sensors and Sensing. CRC Press Taylor & Francis Group. www.taylorfrancis.com/books/mono/10.1201/9780429138348/novel-sensors-sensing-roger-jackson

[14] Dilay, I., & Teplukh, Z. (2014). Development of throttle selector of significantly different pressures for gas-dynamic tools. Eastern-European Journal of Enterprise Technologies, 6(7), 28–33. DOI: 10.15587/1729-4061.2014.31390

[15] West, T., & Photiou, A. (2018). Measurement of gas volume and gas flow. Anaesthesia & Intensive Care Medicine, 19(4), 183–188. DOI: 10.1016/j.mpaic.2018.02.004

[16] Henderson, M. A., & Runcie, C. (2017). Gas, tubes and flow. Anaesthesia & Intensive Care Medicine, 18(4), 180–184. DOI: 10.1016/j.mpaic.2017.01.009

[17] Takami, T., Nishimoto, K., Goto, T., Ogawa, S., Iwata, F., & Takakuwa, Y. (2016). Argon gas flow through glass nanopipette. Japanese Journal of Applied Physics, 55(12), 125202 (5 pp). DOI: 10.7567/jjap.55.125202

[18] Brewer, P. J., Goody, B. A., Gillam, T., Brown, R. J. C., & Milton, M. J. T. (2010). High-accuracy stable gas flow dilution using an internally calibrated network of critical flow orifices. Measurement Science and Technology, 21(11), 115902 (8 pp). DOI: 10.1088/0957-0233/21/11/115902

[19] Milton, M. J. T., Harris, P. M., Smith, I. M., Brown, A. S., & Goody, B. A. (2006). Implementation of a generalized least-squares method for determining calibration curves from data with general uncertainty structures. Metrologia, 43(4), 291–298. DOI: 10.1088/0026-1394/43/4/s17

[20] Liptak, B. G. (2022). Flow Measurement (1st ed.). CRC Press. https://www.routledge.com/Flow-Measurement/Liptak/p/book/9780801983863

[21] Lashkari, S., & Kruczek, B. (2008). Development of a fully automated soap flowmeter for micro flow measurements. Flow Measurement and Instrumentation, 19(6), 397–403. DOI: 10.1016/j.flowmeasinst.2008.08.001

[22] Korn, G. A., & Korn, T. M. (2000). Mathematical Handbook for Scientists and Engineers. Definitions, Theorems, and Formulas for Reference and Review. Dover Publications, Inc. https://www.store.doverpublications.com/products/9780486411477

[23] Valentine, D. T., & Hahn, D. (2022). Essential Matlab for Engineers and Scientists (8th ed.). Academic Press. DOI: 10.1016/C2021-0-01607-2