Study of Gas-Dynamic Throttle Elements as Sensors for Nanotechnology Processes

The Innovations, Nanotechnologies, and Catalysis in the Chemical and Food Industries
pp.
173-179
Анотація

On the basis of experiments for air, the dependence of the flow coefficient α of the watchstones as throttles on the diameter of their passage hole was obtained. The deviation of the calculated value of α from the experimentally determined value is 0.45 %. Also, for a throttle with a diameter of 0.083 mm, the dependence of α for different types of gases was obtained. The use of the obtained dependencies will improve the characteristics of the designed sensors for nanotechnology process control systems.

Автор (співавтори)
Ім'я Прізвище Приналежність до організації E-mail Номер телефону ORCID ID Вчене звання, посада Адреса організації Внесок автора(ів) Приналежність до організації
Ivan
Stasiuk
ivan.d.stasiuk@lpnu.ua
12 Stepana Bandery St.
Концептуалізація
Написання – оригінальний рукопис
Lviv Polytechnic National University
Ihor
Dilai
divlv@ukr.net
12 Stepana Bandery St.
Методологія
Написання – оригінальний рукопис
Lviv Polytechnic National University
Roman
Brylynskyi
roman.b.brylynskyi@lpnu.ua
12 Stepana Bandery St.
Ресурси
Візуалізація
Lviv Polytechnic National University
Solomiia
Markiv
solomiia.markiv.av.2022@lpnu.ua
12 Stepana Bandery St.
Дослідження
Написання – перегляд і редагування
Lviv Polytechnic National University
References

[1] The 12th International Gas Analysis Symposium & Exhibition (GAS 2024). (2024). Porte de Versailles, Paris, France. Retrieved from https://www.gasanalysisevent.com/images/gasanalysis/docs/GAS2024-Fullprogramme.pdf

[2] Arseniev, D. G., & Aouf, N. (2023). Cyber-Physical Systems and Control II. Springer. https://link.springer.com/book/10.1007/978-3-031-20875-1

[3] Arseniev, D. G., Overmeyer, L., Kälviäinen, H., & Katalinić, B. (2020). Cyber-Physical Systems and Control. Springer. https://link.springer.com/book/10.1007/978-3-030-34983-7

[4] GAS Analysis 2022 Conference (GAS 2022). (2022). Paris, France. Retrieved from https://www.gasanalysisevent.com/programme/2022-programme

[5] Teplukh, Z., Dilai, I., Stasiuk, I., Tykhan, M., & Kubara, I.-R. (2018). Design of linear capillary measuring transducers for low gas flow rates. Eastern-European Journal of Enterprise Technologies, 6(5 (96)), 25–32. DOI: 10.15587/1729-4061.2018.150526

[6] Dilay, I., Teplukh, Z., Brylyns'kyy, R., & Kubara, I.-R. (2016). Development of gas dynamic linear systems for setting low pressures. Eastern-European Journal of Enterprise Technologies, 4(7-82), 30–36. DOI: 10.15587/1729-4061.2016.75231

[7] Słomińska, M., Konieczka, P., & Namieśnik, J. (2014). New developments in preparation and use of standard gas mixtures. TrAC Trends in Analytical Chemistry, 62, 135–143. DOI: 10.1016/j.trac.2014.07.013

[8] Dilay, I., Teplukh, Z., Tykhan, M., Stasiuk, I., & Kubara, I.-R. (2017). Effect of external pressures in dynamic gas mixers. Eastern-European Journal of Enterprise Technologies, 4(5-88), 59–65. DOI: 10.15587/1729-4061.2017.26256

[9] Haerri, H.-P., Mace, T., Walden, J., Pascale, C., Niederhauser, B., Wirtz, K., et al. (2017). Dilution and permeation standards for the generation of NO, NO₂ and SO₂ calibration gas mixtures. Measurement Science and Technology, 28(3), 035801 (17 pp). DOI: 10.1088/1361-6501/aa543d

[10] Dilay, I., Teplukh, Z., & Vashkurak, Y. (2014). Basic throttling schemes of gas mixture synthesis systems. Eastern-European Journal of Enterprise Technologies, 4(8), 39–45. DOI: 10.15587/1729-4061.2014.26257

[11] Ivashchuk, O. (2017). Catalytic intensification of the cyclohexane oxidation. Chemistry & Chemical Technology, 11(4), 430–436. DOI: 10.23939/chcht11.04.430

[12] Udd, E. (2024). Fiber Optic Sensors: An Introduction for Engineers and Scientists (3rd ed.). Wiley. https://www.ravenbookstore.com/book/9781119678786

[13] Jackson, R. G. (2019). Novel Sensors and Sensing. CRC Press Taylor & Francis Group. www.taylorfrancis.com/books/mono/10.1201/9780429138348/novel-sensors-sensing-roger-jackson

[14] Dilay, I., & Teplukh, Z. (2014). Development of throttle selector of significantly different pressures for gas-dynamic tools. Eastern-European Journal of Enterprise Technologies, 6(7), 28–33. DOI: 10.15587/1729-4061.2014.31390

[15] West, T., & Photiou, A. (2018). Measurement of gas volume and gas flow. Anaesthesia & Intensive Care Medicine, 19(4), 183–188. DOI: 10.1016/j.mpaic.2018.02.004

[16] Henderson, M. A., & Runcie, C. (2017). Gas, tubes and flow. Anaesthesia & Intensive Care Medicine, 18(4), 180–184. DOI: 10.1016/j.mpaic.2017.01.009

[17] Takami, T., Nishimoto, K., Goto, T., Ogawa, S., Iwata, F., & Takakuwa, Y. (2016). Argon gas flow through glass nanopipette. Japanese Journal of Applied Physics, 55(12), 125202 (5 pp). DOI: 10.7567/jjap.55.125202

[18] Brewer, P. J., Goody, B. A., Gillam, T., Brown, R. J. C., & Milton, M. J. T. (2010). High-accuracy stable gas flow dilution using an internally calibrated network of critical flow orifices. Measurement Science and Technology, 21(11), 115902 (8 pp). DOI: 10.1088/0957-0233/21/11/115902

[19] Milton, M. J. T., Harris, P. M., Smith, I. M., Brown, A. S., & Goody, B. A. (2006). Implementation of a generalized least-squares method for determining calibration curves from data with general uncertainty structures. Metrologia, 43(4), 291–298. DOI: 10.1088/0026-1394/43/4/s17

[20] Liptak, B. G. (2022). Flow Measurement (1st ed.). CRC Press. https://www.routledge.com/Flow-Measurement/Liptak/p/book/9780801983863

[21] Lashkari, S., & Kruczek, B. (2008). Development of a fully automated soap flowmeter for micro flow measurements. Flow Measurement and Instrumentation, 19(6), 397–403. DOI: 10.1016/j.flowmeasinst.2008.08.001

[22] Korn, G. A., & Korn, T. M. (2000). Mathematical Handbook for Scientists and Engineers. Definitions, Theorems, and Formulas for Reference and Review. Dover Publications, Inc. https://www.store.doverpublications.com/products/9780486411477

[23] Valentine, D. T., & Hahn, D. (2022). Essential Matlab for Engineers and Scientists (8th ed.). Academic Press. DOI: 10.1016/C2021-0-01607-2