Preparation and Structure of Chitosan-Based Porous Scaffolds for Potential Application in the Treatment for Diabetic Foot Complications

Development, Energy and Resource Saving in the Chemical and Food Technologies
pp.
104-107
Abstract

As a result of this study, porous chitosan (CS) - based scaffolds loaded with cellulose nanocrystals (CNCs) and graphene (GF) were successfully fabricated using a freeze-drying method.  In particular, the effect of fillers on the structure of the obtained materials was investigated

Author (co-authors)
First name Last name Institutional affiliation E-mail Phone number ORCID ID Academic status, position Institution address Author contribution(s) Institutional affiliation
Zoia
Haholkina
z.haholkina@udc.es
0009-0006-0692-461X
PhD
Dr. Vázquez Cabrera, s/n
Investigation
University of A Coruña
Maite
Rico
maite.rico@udc.es
Professor
Dr. Vázquez Cabrera, s/n
Supervision
University of A Coruña
Rebeca
Bouza
rebeca.bouza@udc.es
Dr. Vázquez Cabrera, s/n
Supervision
University of A Coruña
References

[1] Ferroni, L., Gardin, C., D’Amora, U., Calzà, L., Ronca, A., Tremoli, E., Ambrosio, L., & Zavan, B. (2022). Exosomes of mesenchymal stem cells delivered from methacrylated hyaluronic acid patch improve the regenerative properties of endothelial and dermal cells. Biomater. Adv., 139. DOI: 10.1016/j.bioadv.2022.213000

[2] Ferroni, L., D'Amora, U., Gardin, C., Leo, S., Dalla Paola, L., Tremoli, E., Giuliani, A., Calzà, L., Ronca, A., & Ambrosio L. (2023). Stem cell-derived small extracellular vesicles embedded into methacrylated hyaluronic acid wound dressings accelerate wound repair in a pressure model of diabetic ulcer. J. Nanobiotechnology, 21, 469. DOI: 10.1016/B978-0-443-15717-2.00069-X

[3] Beyene, R. T., Derryberry, S. L., & Barbul, A. (2020). The effect of comorbidities on wound healing. Surg. Clin., 100, 695-705. DOI: 10.1016/j.suc.2020.05.002

[4] Kosaric, N., Bonham, C., Geoffrey, A., Gurtner, C., & Rodrigues, M. (2018). Wound Healing: A Cellular Perspective. DOI: 10.1152/physrev.00067.2017

[5] Grice, E. A., Kong, H. H., Renaud, G., Young, A. C, Bouffard, G. G., Blakesley, R. W, Wolfsberg, T. G, Turner, M. L, Segre, J. A, & NISC Comparative Sequencing Program. (2008). A diversity profile of the human skin microbiota. Genome Res, 18, 1043–1050.

[6] Edwards, R., & Harding, K. G. (2004). Bacteria and wound healing. Curr Opin Infect Dis, 17, 91-96.

[7] Grice, E. A., & Segre, J. A. (2011). The skin microbiome. Corrigendum in Nat Rev Microbiol 9: 626, Nat Rev Microbiol 9: 244–253.

[8] Li, Q., Dunn, E. T., Grandmaison, E. W., & Goosen M. F. A. (1992). Applications and properties of chitosan. J. Bioact. Compat. Polym., 71, 370-397. M. Rinaudo Chitin and chitosan: Properties and applications. Prog. Polym. Sci., 31, 2006, 603-632.

[9] Muzzarelli, R. A. A., Morganti, P., Morganti, G., Palombo, P., Palombo, M., Biagini, G., Belmonte, M., Giantomassi, F., Orlandi, F., & Muzzarelli, C. (2007). Chitin nanofibrils/chitosan glycolate composites as wound medicaments. Carbohydr. Polym., 70, 274-284.

[10] Harugade, A., Sherje, A. P., & Pethe A. (2023). Chitosan: a review on properties, biological activities and recent progress in biomedical applications. React. Funct. Polym., 105634.

[11] Dacrory, S., Hashem, A. H., & Kamel S. (2022). Antimicrobial and antiviral activities with molecular docking study of chitosan/carrageenan clove oil beads. Biotechnol. J., 17, 2100298.

[12] Dai, T., Tanaka, M., Huang, Y.-Y., & Hamblin, M. R. (2011). Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects. Expert Rev Anti Infect Ther., 9, 857–879.

[13] Prelipcean, A. M., Iosageanu, A., Gaspar, A., Pintiliescu, L., Moldovan, O., Craciunescu, T., Negreanu-Pirjol, B., Negreanu-Pirjol, R., Mitran A., Marin, M., & D’Amora U. (2022). Marine and agro-industrial by-products valorization intended for topical formulations in wound healing applications. Materials Basel., 15, 3507.

[14] Liu, Y., Cai, Z., Sheng, L., Ma, M., Xu, Q., & Jin, Y. (2019). Structure-property of crosslinked chitosan/silica composite films modified by genipin and glutaraldehyde under alkaline conditions. Carbohydr. Polym., 215, 348-357.

[15] Jin, J., Song, M., & Hourston, D. J. (2004). Novel chitosan-based films cross-linked by genipin with improved physical properties. Biomacromolecules, 5(1), 162-168.

[16] Bi, L., Cao, Z., Hu, Y., Song, Y., Yu, L., Yang B., et al. (2011). Effects of different cross-linking conditions on the properties of genipin-cross-linked chitosan/collagen scaffolds for cartilage tissue engineering. J Mater Sci Mater Med., 22(1), 51-62.

[17] Khan, A., Salmieri, S., Fraschini, C., Bouchard, J., Riedl, B., & Lacroix, M. (2014). Genipin cross-linked nanocomposite films for the immobilization of antimicrobia l agent. ACS Appl. Mater. Interfaces, 6(17), 15232-15242.

[18] De France, K. J., Hoare, T., & Cranston, E. D. (2017). Review of hydrogels and aerogels containing Nanocellulose. Chem. Mater., 29, 4609-4631.

[19] Malladi, R., Nagalakshmaiah, M., Robert, M., & Elkoun, S. (2018). Importance of agriculture and industrial waste in the field of nano cellulose and its recent industrial developments: a review. ACS Sustain. Chem. Eng., 6, 2807-2828.

[20] Trache, D., Hussin M. H., Haafiz, M. K. M., & Thakur, V. K. (2017). Recent progress in cellulose nanocrystals: sources and production. Nanoscale, 9, 1763-1786.

[21] Dacrory, S., Hashem, A. H., & Kamel, S. (2022). Antimicrobial and antiviral activities with molecular docking study of chitosan/carrageenan clove oil beads. Biotechnol. J., 17, 2100298.

[22] Hasanin, M. S., El-Sakhawy, M., Ahmed, H. Y., & Kamel, S. (2022). Hydroxypropyl methylcellulose/graphene oxide composite as drug carrier system for 5-fluorouracil. Biotechnol. J., 17, 2100183.

[23] Mohammed, H., Kumar, A., Bekyarova, E., Hadeethi, Y., Zhang, X., Chen, M., Ansari, M. S., Cochis, A., & Rimondini L. (2020). Antimicrobial mechanisms and effectiveness of graphene and graphene-functionalized biomaterials. A scope review. Front. Bioeng Biotechnol. DOI: 10.3389/fbioe.2020.00465

[24] Dacrory, S., D'Amora, U., Longo, A., Mohamed Hasanin, S., Soriente, A., Fasolino, I., Kamel, S., Al-Shemy, M. T., & Scialla, L. (2024). Chitosan/cellulose nanocrystals/graphene oxide scaffolds as a potential pH-responsive wound dressing: Tuning physico-chemical, pro-regenerative and antimicrobial properties. International Journal of Biological Macromolecules. DOI: 10.1016/j.ijbiomac.2024.134643