Crystallization Parameters of CsPbBrCl2 Melt

The Innovations, Nanotechnologies, and Catalysis in the Chemical and Food Industries
pp.
199-203
Abstract

Differential thermal analysis (DTA) was used to study the crystallization parameters of CsPbBrCl2 perovskite. CsPbBrCl2 melts crystallize in the temperature range of 510 – 570°C depending on its dwell temperature. In the dwell temperature range of 574 – 625°С the crystallization of the melt is stabilized at a temperature of 560 ±5°С.

Author (co-authors)
First name Last name Institutional affiliation E-mail Phone number ORCID ID Academic status, position Institution address Author contribution(s) Institutional affiliation
Oleh
Kopach
o.kopach@chnu.edu.ua
0000-0002-1513-5261
Cand. Chem. Sci., Assistant Professor
2, Kotsiubynskoho Str., Chernivtsi, Ukraine, 58002
Conceptualization
Data Curation
Investigation
Methodology
Project Administration
Supervision
Writing – Review & Editing
Yuriy Fedkovych Chernivtsi National University
Vasylyna
Kopach
v.kopach@chnu.edu.ua
0000-0002-6832-447X
Cand. Chem. Sci., Senior Researcher
2 Kotsiubynskoho St. , Chernivtsi, Ukraine, 58002
Writing – Original Draft Preparation
Investigation
Methodology
Yuriy Fedkovych Chernivtsi National University
Taras
Diiakoniuk
diiakoniuk.taras@chnu.edu.ua
Student
2 Kotsiubynskoho St. , Chernivtsi, Ukraine, 58002
Investigation
Writing – Original Draft Preparation
Yuriy Fedkovych Chernivtsi National University
Petro
Fochuk
p.fochuk@chnu.edu.ua
0000-0002-4149-4882
Dr. Chem. Sci., Professor
2 Kotsiubynskoho St. , Chernivtsi, Ukraine, 58002
Conceptualization
Funding Acquisition
Writing – Review & Editing
Yuriy Fedkovych Chernivtsi National University
References

[1] Ahmad, M., Rehman, G., Ali, L., Shafiq, M., Iqbal, R., Ahmad, R., Khan, T., Jalali-Asadabadi, S., Maqbool, M., & Ahmad, I. (2017). Structural, electronic and optical properties of CsPbX₃ (X = Cl, Br, I) for energy storage and hybrid solar cell applications. Journal of Alloys and Compounds, 705, 828–839. DOI: 10.1016/j.jallcom.2017.02.147.

[2] Echeverría-Arrondo, C., Alvarez, A. O., Masi, S., Fabregat-Santiago, F., & Porta, F. A. L. (2023). Electronic, structural, optical, and electrical properties of CsPbX₃ powders (X = Cl, Br, and I) prepared using a surfactant-free hydrothermal approach. Nanomanufacturing, 3(2), 217–227. DOI: 10.3390/nanomanufacturing3020013.

[3] Chen, H., Li, M., Wang, B., Ming, S., & Su, J. (2021). Structure, electronic and optical properties of CsPbX₃ halide perovskite: A first-principles study. Journal of Alloys and Compounds, 862, 158442. DOI: 10.1016/j.jallcom.2020.158442.

[4] Rogalski, A., Wang, F., Wang, J., Martyniuk, P., & Hu, W. (2025). The perovskite optoelectronic devices – a look at the future. Small Methods, 9(1), 2400709. DOI: 10.1002/smtd.202400709.

[5] Liu, J., Qu, J., Kirchartz, T., & Song, J. (2021). Optoelectronic devices based on the integration of halide perovskites with silicon-based materials. Journal of Materials Chemistry A, 9, 20919–20940. DOI: 10.1039/D1TA04527J.

[6] Dong, H., Ran, C., Gao, W. et al. (2023). Metal halide perovskite for next-generation optoelectronics: progresses and prospects. eLight, 3, 3. DOI: 10.1186/s43593-022-00033-z.

[7] Liao, M., Shan, B., & Li, M. (2019). In situ Raman spectroscopic studies of thermal stability of all-inorganic cesium lead halide (CsPbX₃, X = Cl, Br, I) perovskite nanocrystals. Journal of Physical Chemistry Letters, 10(6), 1217–1225. DOI: 10.1021/acs.jpclett.9b00344.

[8] Kopach, O., Kopach, V., Fochuk, P., Bolotnikov, A. E., & James, R. B. (2024). Peculiarities of CsPbBr₃ perovskites melting in quasi-equilibrium conditions. Proceedings of SPIE 13151, Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XXVI, 131510N. DOI: 10.1117/12.3027496.