The impact of Biochar Amendments and Biostimulant on Soil Nematodes and Biomass Yield of Miscanthus on Poor-Nutritionally Soils of Post-Military Areas in Kyiv Region

Ecology and Sustainable Development. Environmental Protection
pp.
421-427
Abstract

This study investigates the influence of biochar and biostimulants on soil properties, nematode community structure, and Miscanthus yield in degraded post-military soils. BD2 treatment demonstrated the highest biomass production, while nematode trophic diversity stabilized over time. Future research should assess trace element interactions with nematode communities and Miscanthus yield dynamics.

Author (co-authors)
First name Last name Institutional affiliation E-mail Phone number ORCID ID Academic status, position Institution address Author contribution(s) Institutional affiliation
Anastasiia
Husieva
a.lutsiuk@nubip.edu.ua
0009-0001-4648-5782
PhD student
UKRAINE, Kyiv, Heroiv Oborony Str.13
Data Curation
Writing – Original Draft Preparation
National University of Life and Enviromental Sciens of Ukraine
Tatyana
Stefanovska
tstefanovska@nubip.edu.ua
0000-0002-7522-5197
Associate Professor
UKRAINE, Kyiv, Heroiv Oborony Str.
Project Administration
Writing – Review & Editing
National University of Life and Enviromental Sciens of Ukraine
Andrzej
Skwiercz
andrzej.skwiercz@inhort.pl
0000-0002-7008-5674
Professor
POLAND, Skierniewice, Konstytucji 3 Maja Str.1/3
Project Administration
Research Institute of Horticulture
Vitaliy
Stadnik
y.stadnik@lpnu.ua
0000-0003-0235-5641
Assistant
UKRAINE, Lviv, Stepana Bandery Str.12
Formal Analysis
Lviv Polytechnic National University
Irina
Artemchuk
dok1ty@ukr.net
Assistant
UKRAINE, Kyiv, Heroiv Oborony Str.
Supervision
National University of Life and Enviromental Sciens of Ukraine
References

[1]     Hryhorczuk, D., Levy, B. S., Prodanchuk, M., Kravchuk, O., Bubalo, N., Hryhorczuk, A., & Erickson, T. B. (2024). The environmental health impacts of Russia's war on Ukraine. Journal of Occupational Medicine and Toxicology, 19(1), 1. DOI: 10.1186/s12995-023-00398-y.

[2]     Yutilova, K., Shved, E., Rozantsev, G., & Adamski, A. (2025). Russia–Ukraine war impacts on environment: Warfare chemical pollution and recovery prospects. Environmental Science and Pollution Research. DOI: 10.1007/s11356-025-36098-9.

[3]     Stefanovska, T., Skwiercz, A., Pidlisnyuk, V., Boroday, V., Medkow, A., & Zhukov, O. (2024). Effect of the biostimulants of microbiological origin on the entomopathogenic and plant parasitic nematodes from Miscanthus × giganteus plantations. Journal of Horticultural Research, 32(1). DOI: 10.2478/johr-2024-0003.

[4]     Stefanovska, T., Skwiercz, A., Pidlisnyuk, V., Zhukov, O., Kozacki, D., Mamirova, A., ... & Ust’ak, S. (2022). The short-term effects of amendments on nematode communities and diversity patterns under the cultivation of Miscanthus × giganteus on marginal land. Agronomy, 12(9), 2063.

[5]     Pidlisnyuk, V., Erickson, L., Trögl, J., Shapoval, P., Davis, L., Popelka, J., Stefanovska, T., & Hettiarachchi, G. (2018). Metals uptake behavior in Miscanthus × giganteus plant during growth at the contaminated soil from the military site in Sliač, Slovakia. Polish Journal of Chemical Technology, 20(2), 1–7. DOI: 10.2478/pjct-2018-0016.

[6]     Jenkins, W. R. (1964). A rapid centrifugal-flotation technique for separating nematodes from soil. Plant Disease Reporter, 48, 692.

[7]     Van Bezooijen, J. (2006). Methods and techniques for nematology (p. 20). Wageningen University.

[8]     Brzeski, M. W. (1998). Nematodes of Tylenchina in Poland and temperate Europe. Museum and Institute of Zoology, Polish Academy of Science.

[9]     Andrássy, I. (2007). Free-living nematodes of Hungary (Nematoda Errantia). In Csuzdi, C., & Mahunka, S. (Eds.), Pedozoologica Hungarica (p. 496).

[10]   Yeates, G. W., Bongers, T., De Goede, R. G., Freckman, D. W., & Georgieva, S. (1993). Feeding habits in soil nematode families and genera–An outline for soil ecologists. Journal of Nematology, 25(3), 315.

[11]   Wilschut, R. A., & Geisen, S. (2021). Nematodes as drivers of plant performance in natural systems. Functional Ecology, 26(3), 237–247.

[12]   Fatiev, A. I., & Paschenko, Y. V. (Eds.). (2003). Background content of micronutrients in soils of Ukraine (p. 117). Kharkiv. ISBN 966-8478-22-3.

[13]   Lehmann, J., & Joseph, S. (2015). Biochar for environmental management: Science, technology and implementation. Routledge.

[14]   Biederman, L. A., & Harpole, W. S. (2013). Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy, 5(3), 202–214. DOI: 10.1111/gcbb.12037.

[15]   Jeffery, S., Verheijen, F. G., van der Velde, M., & Bastos, A. C. (2017). A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture, Ecosystems & Environment, 191, 5–16. DOI: 10.1016/j.agee.2013.09.006.

[16]   du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories, and regulation. Scientia Horticulturae, 196, 3–14. DOI: 10.1016/j.scienta.2015.09.021.

[17]     Calvo, P., Nelson, L., & Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. Plant and Soil, 383(1–2), 3–41. DOI: 10.1007/s11104-014-2131-8.