This study investigates the influence of biochar and biostimulants on soil properties, nematode community structure, and Miscanthus yield in degraded post-military soils. BD2 treatment demonstrated the highest biomass production, while nematode trophic diversity stabilized over time. Future research should assess trace element interactions with nematode communities and Miscanthus yield dynamics.
[1] Hryhorczuk, D., Levy, B. S., Prodanchuk, M., Kravchuk, O., Bubalo, N., Hryhorczuk, A., & Erickson, T. B. (2024). The environmental health impacts of Russia's war on Ukraine. Journal of Occupational Medicine and Toxicology, 19(1), 1. DOI: 10.1186/s12995-023-00398-y.
[2] Yutilova, K., Shved, E., Rozantsev, G., & Adamski, A. (2025). Russia–Ukraine war impacts on environment: Warfare chemical pollution and recovery prospects. Environmental Science and Pollution Research. DOI: 10.1007/s11356-025-36098-9.
[3] Stefanovska, T., Skwiercz, A., Pidlisnyuk, V., Boroday, V., Medkow, A., & Zhukov, O. (2024). Effect of the biostimulants of microbiological origin on the entomopathogenic and plant parasitic nematodes from Miscanthus × giganteus plantations. Journal of Horticultural Research, 32(1). DOI: 10.2478/johr-2024-0003.
[4] Stefanovska, T., Skwiercz, A., Pidlisnyuk, V., Zhukov, O., Kozacki, D., Mamirova, A., ... & Ust’ak, S. (2022). The short-term effects of amendments on nematode communities and diversity patterns under the cultivation of Miscanthus × giganteus on marginal land. Agronomy, 12(9), 2063.
[5] Pidlisnyuk, V., Erickson, L., Trögl, J., Shapoval, P., Davis, L., Popelka, J., Stefanovska, T., & Hettiarachchi, G. (2018). Metals uptake behavior in Miscanthus × giganteus plant during growth at the contaminated soil from the military site in Sliač, Slovakia. Polish Journal of Chemical Technology, 20(2), 1–7. DOI: 10.2478/pjct-2018-0016.
[6] Jenkins, W. R. (1964). A rapid centrifugal-flotation technique for separating nematodes from soil. Plant Disease Reporter, 48, 692.
[7] Van Bezooijen, J. (2006). Methods and techniques for nematology (p. 20). Wageningen University.
[8] Brzeski, M. W. (1998). Nematodes of Tylenchina in Poland and temperate Europe. Museum and Institute of Zoology, Polish Academy of Science.
[9] Andrássy, I. (2007). Free-living nematodes of Hungary (Nematoda Errantia). In Csuzdi, C., & Mahunka, S. (Eds.), Pedozoologica Hungarica (p. 496).
[10] Yeates, G. W., Bongers, T., De Goede, R. G., Freckman, D. W., & Georgieva, S. (1993). Feeding habits in soil nematode families and genera–An outline for soil ecologists. Journal of Nematology, 25(3), 315.
[11] Wilschut, R. A., & Geisen, S. (2021). Nematodes as drivers of plant performance in natural systems. Functional Ecology, 26(3), 237–247.
[12] Fatiev, A. I., & Paschenko, Y. V. (Eds.). (2003). Background content of micronutrients in soils of Ukraine (p. 117). Kharkiv. ISBN 966-8478-22-3.
[13] Lehmann, J., & Joseph, S. (2015). Biochar for environmental management: Science, technology and implementation. Routledge.
[14] Biederman, L. A., & Harpole, W. S. (2013). Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy, 5(3), 202–214. DOI: 10.1111/gcbb.12037.
[15] Jeffery, S., Verheijen, F. G., van der Velde, M., & Bastos, A. C. (2017). A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture, Ecosystems & Environment, 191, 5–16. DOI: 10.1016/j.agee.2013.09.006.
[16] du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories, and regulation. Scientia Horticulturae, 196, 3–14. DOI: 10.1016/j.scienta.2015.09.021.
[17] Calvo, P., Nelson, L., & Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. Plant and Soil, 383(1–2), 3–41. DOI: 10.1007/s11104-014-2131-8.