Lignocellulous Raw Materials and Its Wastes Transformation Into Value-Added Products

Development, Energy and Resource Saving in the Chemical and Food Technologies
pp.
132-137
Abstract

The aim of our work was to investigate the possibility of obtaining marketable products (fibrous and microcrystalline cellulose, cellulose acetate, lignosulfonates, oxyaldehydes, fertilizers and primings, etc.) from renewable lignocellulosic raw materials

Author (co-authors)
First name Last name Institutional affiliation E-mail Phone number ORCID ID Academic status, position Institution address Author contribution(s) Institutional affiliation
Bohdan
Korinenko
b.korinenko.b@gmail.com
0009-0001-7581-5656
PhD, Junior Researcher
1, Academician Kukhar Str, Kyiv, 02094
Data Curation
Investigation
Writing – Original Draft Preparation
.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine
Tetiana
Tkachenko
ttv13ttv@gmail.com
0000-0002-1295-0084
Senior Researcher, PhD, Senior Researcher
1, Academician Kukhar Str, Kyiv, 02094
Methodology
Visualization
Writing – Review & Editing
.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine
Oleksandr
Pavliuk
pavluiksasha@gmail.com
0000-0002-0857-4979
PhD, Researcher
1, Academician Kukhar Str, Kyiv, 02094
Formal Analysis
Methodology
Software
.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine
Dmytro
Kamenskyh
kam04@ukr.net
0000-0002-7341-2386
Senior Researcher, PhD, Senior Researcher
1, Academician Kukhar Str, Kyiv, 02094
Investigation
Resources
Visualization
.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine
Vitalii
Yevdokymenko
vay.77@ukr.net
0000-0001-6567-2527
Senior Researcher, PhD, Deputy Department
1, Academician Kukhar Str, Kyiv, 02094
Funding Acquisition
Project Administration
Supervision
.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine
References

[1] Aden, A., Bozell, J., Holladay, J., White, J. F., & Manheim, A. (2004). Top Value Added Chemicals From Biomass. Vol. 1. Results of Screening for Potential Candidates from Sugars and Synthesis Gas. PNNL NREL. https://www.nrel.gov/docs/fy04osti/35523.pdf

[2] Kukhar, V. P. (2007). Biomass – potential feedstock for industrial organic synthesis. Catalysis and Petrochemistry, 15. https://kataliz.org.ua/old/arhiv/15_2007_ua.html

[3] Chambona, F., Rataboula, F., Pinela, C., Cabiacb, A., Guillonb, E., & Essayema, N. (2011). Cellulose hydrothermal conversion promoted by heterogeneous Bronsted and Lewis acids: Remarkable efficiency of solid Lewis acids to produce lactic acid. Applied Catalysis B: Environmental, 105, 171–181. DOI: 10.1016/j.apcatb.2011.04.009

[4] Ma, H., Shou, B., Li, Y., & Argyropoulos, D. S. (2012). Conversion of fructose to 5-hydroxymethyl-furfural with a functionalized ionic liquid. BioResources, 1(7), 533–544. https://api.semanticscholar.org/CorpusID:22427858

[5] Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107, 2411–2502. DOI: 10.1021/cr050989d

[6] Chheda, J. N., Huber, G. W., & Dumesic, J. A. (2007). Liquid-Phase Catalytic Processing of Biomass-Derived Oxygenated Hydrocarbons to Fuels and Chemicals. Angewandte Chemie International Edition, 46, 7164–7183. DOI: 10.1002/anie.200604274

[7] Lichtenthaler, F. W. (1998). Towards improving the utility of ketoses as organic raw materials. Carbohydrate Research, 313, 69–89. DOI: 10.1016/S0008-6215(98)00222-5

[8] Shaw, P. E. (1967). Acid–catalyzed dehydration of D-fructose. Carbohydrate Research, 5, 266–273. DOI: 10.1016/S0008-6215(00)80500-5

[9] Kuster, B. F. M., & Temmink, H. M. G. (1977). The influence of pH and weak-acid anions on the dehydration of D-fructose. Carbohydrate Research, 54, 183–191. DOI: 10.1016/S0008-6215(00)84808-9

[10] Rosatella, A. A., Simeonov, S. P., Frade, R. F. M., & Afonso, C. A. M. (2011). 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications. Green Chemistry, 13, 754–793. DOI: 10.1039/C0GC00401D

[11] Lanzafame, P., Temi, D. M., Perathoner, S., Spadaro, A. N., & Centi, G. (2012). Direct conversion of cellulose to glucose and valuable intermediates in mild reaction conditions over solid acid catalysts. Catalysis Today, 179, 178–184. DOI: 10.1016/j.cattod.2011.07.018

[12] Tigunova, O. O., Beiko, N. E., Kamenskyh, D. S., Tkachenko, T. V., Yevdokymenko, V. O., Kashkovskiy, V. I., & Shulga, S. M. (2016). Lignocellulosic biomass after explosive autohydrolysis as substrate for butanol. Biotechnologia Acta, 9(4), 28–34. DOI: 10.15407/biotech9.04.028

[13] Bratishko, V., Tkachenko, T., Shulga, S., & Tigunova, O. (2024). Results of chemical studies of parameters and composition of samples of lignocellulose raw materials of communal origin. 23rd International Scientific Conference Engineering for Rural Development, Jelgava, Latvia, 1008–1015. DOI: 10.22616/ERDev.2024.23.TF205

[14] Tigunova, O. O., Kamenskyh, D. S., Tkachenko, T. V., Yevdokymenko, V. O., Kashkovskiy, V. I., Rakhmetov, D. B., Blume, Y. B., & Shulga, S. M. (2020). Biobutanol production from plant biomass. The Open Agriculture Journal, 14(1). DOI: 10.2174/1874331502014010187

[15] Bratishko, V., Shulga, S., Tigunova, O., & Achkevych, O. (2023). Ultrasonic cavitation of lignocellulosic raw materials as effective method of preparation for butanol production. 22nd International Scientific Conference Engineering for Rural Development Proceedings, 264–268. DOI: 10.22616/ERDev.2023.22.TF053

[16] Tkachenko, T. V., Aksylenko, M. D., Kamenskyh, D. S., & Yevdokymenko, V. O. (2023). Sustainable processing of lignocellulosic biomass. IOP Conference Series: Earth and Environmental Science, 1254, 012088. DOI: 10.1088/1755-1315/1254/1/012088

[17] Korinenko, B. V., Sokol, V. S., Tkachenko, T. V., Kamenskyh, D. S., Haidai, O. O., Sheludko, Y. V., Povazhny, V. A., Ruban, S. V., & Yevdokymenko, V. O. (2024). Carbon materials derived from industrial hemp hurd. 12th International Conference "Nanotechnology and Nanomaterials" (NANO-2024), August 21–24, Uzhhorod, Ukraine, 260.

[18] Sokol, V. S., Korinenko, B. V., Hayday, O. O., Khimach, N. Yu., Tkachenko, T. V., Kamensʹkykh, D. S., Povazhnyy, V. A., & Yevdokymenko, V. O. (2024). Termoliz kostry tekhnichnykh konopelʹ dlya oderzhannya likvidnykh produktiv [Thermolysis of industrial hemp hurds to obtain liquid products]. In Bioaktyvni spoluky, novi rechovyny i materialy (pp. 251–255). Kyiv: Interservis. https://drive.google.com/file/d/1oB9uBhRoMnED1lq-wAuG7j2y0Xgk3V7E/edit

[19] Kucherenko, V. O., Yevdokymenko, V. O., Tamarkina, Ju. V., Tkachenko, T. V., Kamenskyh, D. S., Redko, А. V., & Povazhnyi, V. А. (2024). Nanoporous carbon formation under alkali thermochemolysis of high-ash lignin. 12th International Conference "Nanotechnology and Nanomaterials" (NANO-2024), August 21–24, Uzhhorod, Ukraine, 29.

[20] Barybina, L. O., Tkachenko, T. V., Haidai, O. O., Korinenko, B. V., Kamenskyh, D. S., Sheludko, Y. V., Povazhny, V. A., Bohatyrenko, V. A., Ruban, S. V., & Yevdokymenko, V. O. (2024). Structural and morphological features of microcrystalline cellulose from industrial hemp hurd. Chemistry, Physics and Technology of Surface, 15(4), 524–533. DOI: 10.15407/hftp15.04.524

[21] Tkachenko, T. V., Haidai, O. O., Kamenskyh, D. S., Sheludko, Y. V., Pavliuk, O. V., & Yevdokymenko, V. O. (2024). Physicochemical characteristics of microcrystalline cellulose from switchgrass (Panicum virgatum L.) obtained in the presence of a solid catalyst. Chemistry, Physics and Technology of Surface, 15(1), 57–66. DOI: 10.15407/hftp15.01.057

[22] Tkachenko, T. V., Kamenskyh, D. S., Sheludko, Y. V., & Yevdokymenko, V. O. (2022). Structural and morphological features of microcrystalline cellulose from soybean straw. Chemistry, Physics and Technology of Surface, 13(4), 455–466. DOI: 10.15407/hftp13.04.455

[23] Tkachenko, T., Sheludko, Ye., Yevdokymenko, V., Kamenskyh, D., Khimach, N., Povazhny, V., Filonenko, M., Aksylenko, M., & Kashkovsky, V. (2022). Physico-chemical properties of microcrystalline cellulose from flax. Applied Nanoscience, 12(4), 1007–1020. DOI: 10.1007/s13204-021-01819-2

[24] Aksylenko, M. D., Sheludko, Y. V., Tkachenko, T. V., Haidai, O. O., & Yevdokymenko, V. O. (2024). Prospects for using composite preparations based on silica nanosols. IOP Conference Series: Earth and Environmental Science, 1415, 012020. DOI: 10.1088/1755-1315/1415/1/012020

[25] Tkachenko, T. V., Yevdokymenko, V. O., Kamensʹkykh, D. S., Sheludʹko, Ye. V., Aksylenko, M. D., & Kashkovsʹkyy, V. I. (2020). Roslynni vidkhody yak perspektyvna syrovyna dlya oderzhannya bazovykh produktiv orhanichnoho syntezu [Plant waste as a promising raw material for obtaining basic products of organic synthesis]. 6th International Congress Stalyy Rozvytok: Zakhyst Navkolyshnʹoho Seredovyshcha, Enerhooshchadnistʹ, Zbalansovane Pryrodokorystuvannya, Lviv, 171. https://science.lpnu.ua/sites/default/files/attachments/2018/aug/14051/abstracts2020.pdf

[26] Pavlyuk, O. V., Tkachenko, T. V., Yevdokymenko, V. O., Kamensʹkykh, D. S., & Kashkovsʹkyy, V. I. (2021). Katalitychna konversiya tselyulozy ta lihninu v napryamku otrymannya ridkykh vysokooktanovykh dobavok [Catalytic conversion of cellulose and lignin towards obtaining liquid high-octane additives]. 6th International Youth Congress Stalyy Rozvytok: Zakhyst Navkolyshnʹoho Seredovyshcha, Enerhooshchadnistʹ, Zbalansovane Pryrodokorystuvannya, Lviv, 165. https://science.lpnu.ua/sites/default/files/attachments/2021/jan/23053/youthcongressproceedings2021_0.pdf

[27] Pavlyuk, O. V., Tkachenko, T. V., & Kashkovsʹkyy, V. I. (2018). Oderzhannya oksyalʹdehidiv z roslynnoyi syrovyny [Obtaining oxyaldehydes from plant raw materials]. Tezy dopovidey I Mizhnarodnoyi (KHI Ukrayinsʹkoyi) naukovoyi konferentsiyi studentiv, aspirantiv i molodykh uchenykh “Khimichni problemy sʹohodennya” (KHPS-2018), Vinnytsya, 169. https://drive.google.com/file/d/1eoYTvDom6Ty1WzlSDFaG-FHwu0V2YXsh/view