Plant Oil-Based Polymers: Synthesis, Structure, and Temperature-Responsive Properties Near Physiological Temperatures

Development, Energy and Resource Saving in the Chemical and Food Technologies
pp.
108-111
Abstract

Acrylic monomers derived from palm (PMM), hydrogenated sunflower (HFM) and castor (CSM) oils were polymerized to explore phase transitions. DSC analysis revealed semicrystalline structures in poly(HFM) and poly(PMM) and an amorphous structure in poly(CSM). The synthesized polymers exhibit a wide range of glass, melting, and flow transition temperatures, with some close to the physiological range, highlighting potential biomedical applications and polymer brushes development.

Author (co-authors)
First name Last name Institutional affiliation E-mail Phone number ORCID ID Academic status, position Institution address Author contribution(s) Institutional affiliation
Anastasiia
Chebotar
anastasiia.chebotar.xt.2020@lpnu.ua
https://orcid.org/0009-0004-2668-9931
Student
12 Bandery St.
Conceptualization
Data Curation
Investigation
Methodology
Writing – Review & Editing
Visualization
Writing – Original Draft Preparation
Lviv Polytechnic National University
Bohdan
Domnich
bohdan.domnich@ndsu.edu
Student
USA, Fargo, ND 58102
Conceptualization
Data Curation
Investigation
Methodology
Visualization
Writing – Original Draft Preparation
Writing – Review & Editing
North Dakota State University
Yurij
Panchenko
yurii.v.panchenko@lpnu.ua
https://orcid.org/0000-0003-1760-177X
Associate Professor
12 Bandery St.
Investigation
Methodology
Writing – Original Draft Preparation
Writing – Review & Editing
Lviv Polytechnic National University
Volodymyr
Donchak
volodymyr.a.donchak@lpnu.ua
https://orcid.org/0000-0003-0307-7305
Professor
12 Bandery St.
Conceptualization
Project Administration
Supervision
Writing – Review & Editing
Lviv Polytechnic National University
Yurij
Stetsyshyn
yrstecushun@ukr.net
https://orcid.org/0000-0002-6498-2619
Professor
12 Bandery St.
Conceptualization
Investigation
Methodology
Project Administration
Supervision
Writing – Review & Editing
Lviv Polytechnic National University
Andriy
Voronov
Andriy.Voronov@ndsu.edu
Professor
USA, Fargo, ND 58102
Conceptualization
Funding Acquisition
Project Administration
Supervision
Validation
Writing – Original Draft Preparation
Writing – Review & Editing
North Dakota State University
References

[1] Chamas, A., Moon, H., Zheng, J., Qiu, Y., Tabassum, T., Jang, J. H., Abu-Omar, M., Scott, S. L., & Suh, S. (2020). Degradation Rates of Plastics in the Environment. ACS Sustainable Chemistry and Engineering, 8(9), 3494–3511. DOI: 10.1021/ACSSUSCHEMENG.9B06635.

[2] Frank D. Gunstone. (2001). Chemical reactions of fatty acids with special reference to the carboxyl group. Eur. J. Lipid Sci. Technol., 103, 307–314. DOI: 10.1002/1438-9312(200105)103:5%3C307::AID-EJLT307%3E3.0.CO;2-D.

[3] Demchuk, Z., Kirianchuk, V., Kingsley, K., Voronov, S., & Voronov, A. (2018). Plasticizing and Hydrophobizing Effect of Plant Oil-Based Acrylic Monomers in Latex Copolymers with Styrene and Methyl Methacrylate. International Journal of Theoretical and Applied Nanotechnology. DOI: 10.11159/IJTAN.2018.005.

[4] Demchuk, Z., Shevchuk, O., Tarnavchyk, I., Kirianchuk, V., Kohut, A., Voronov, S., & Voronov, A. (2016). Free Radical Polymerization Behavior of the Vinyl Monomers from Plant Oil Triglycerides. ACS Sustainable Chemistry and Engineering, 4(12), 6974–6980. DOI: 10.1021/ACSSUSCHEMENG.6B01890.

[5] Demchuk, Z., Shevchuk, O., Tarnavchyk, I., Kirianchuk, V., Lorenson, M., Kohut, A., Voronov, S., & Voronov, A. (2016). Free-radical copolymerization behavior of plant-oil-based vinyl monomers and their feasibility in latex synthesis. ACS Omega, 1(6), 1374–1382. DOI: 10.1021/ACSOMEGA.6B00308.

[6] Gandini, A., & Lacerda, T. M. (2018). Polymers from Plant Oils. DOI: 10.1002/9781119555834.

[7] Haque, F. M., et al. (2022). Defining the Macromolecules of Tomorrow through Synergistic Sustainable Polymer Research. Chemical Reviews, 122(6), 6322–6373. DOI: 10.1021/ACS.CHEMREV.1C00173.

[8] Kantaros, A., & Ganetsos, T. (2023). From Static to Dynamic: Smart Materials Pioneering Additive Manufacturing in Regenerative Medicine. International Journal of Molecular Sciences, 24(21), 15748. DOI: 10.3390/IJMS242115748.

[9] Krist, S. (2020). Vegetable Fats and Oils. DOI: 10.1007/978-3-030-30314-3.

[10] Delatte, D., Kaya, E., Kolibal, L. G., Mendon, S. K., Rawlins, J. W., & Thames, S. F. (2014). J Appl Polym Sci, 131, 40249. DOI: 10.1002/app.40249.

[11] Macario, A., Giordano, G., Onida, B., Cocina, D., Tagarelli, A., & Giuffrè, A. M. (2010). Biodiesel production process by homogeneous/heterogeneous catalytic system using an acid–base catalyst. Applied Catalysis A: General, 378(2), 160–168. DOI: 10.1016/J.APCATA.2010.02.016.

[12] Popadyuk, N., Popadyuk, A., Kohut, A., & Voronov, A. (2016). Thermoresponsive latexes for fragrance encapsulation and release. International Journal of Cosmetic Science, 38(2), 139–147. DOI: 10.1111/ICS.12267.

[13] Roy, I., & Gupta, M. N. (2003). Smart Polymeric Materials: Emerging Biochemical Applications. Chemistry & Biology, 10(12), 1161–1171. DOI: 10.1016/J.CHEMBIOL.2003.12.004.

[14] Satyarthi, J. K., Srinivas, D., & Ratnasamy, P. (2011). Hydrolysis of vegetable oils and fats to fatty acids over solid acid catalysts. Applied Catalysis A: General, 391(1–2), 427–435. DOI: 10.1016/J.APCATA.2010.03.047.

[15] Sloutski, A., & Cohn, D. (2023). Reverse thermo-responsive biodegradable shape memory-displaying polymers. Polymer, 267, 125640. DOI: 10.1016/J.POLYMER.2022.125640.

[16] Stetsyshyn, Y., Raczkowska, J., Lishchynskyi, O., Awsiuk, K., Zemla, J., Dąbczyński, P., Kostruba, A., Harhay, K., Ohar, H., Orzechowska, B., Panchenko, Y., Vankevych, P., & Budkowski, A. (2018). Glass transition in temperature-responsive poly(butyl methacrylate) grafted polymer brushes. Journal of Materials Chemistry B, 6(11), 1613–1621. DOI: 10.1039/C8TB00088C.

[17] Tarnavchyk, I., Popadyuk, A., Popadyuk, N., & Voronov, A. (2015). Synthesis and Free Radical Copolymerization of a Vinyl Monomer from Soybean Oil. ACS Sustainable Chemistry and Engineering, 3(7), 1618–1622. DOI: 10.1021/ACSSUSCHEMENG.5B00312.

[18] Yuan, L., Wang, Z., Trenor, N. M., & Tang, C. (2015). Robust amidation transformation of plant oils into fatty derivatives for sustainable monomers and polymers. Macromolecules, 48(5), 1320–1328. DOI: 10.1021/ACS.MACROMOL.5B00091.

[19] Yuan, L., Wang, Z., Trenor, N. M., & Tang, C. (2016). Amidation of triglycerides by amino alcohols and their impact on plant oil-derived polymers. Polymer Chemistry, 7(16), 2790–2798. DOI: 10.1039/C6PY00048G.

[20] Zhu, Y., Romain, C., & Williams, C. K. (2016). Sustainable polymers from renewable resources. Nature, 540(7633), 354–362. DOI: 10.1038/NATURE21001.