Acrylic monomers derived from palm (PMM), hydrogenated sunflower (HFM) and castor (CSM) oils were polymerized to explore phase transitions. DSC analysis revealed semicrystalline structures in poly(HFM) and poly(PMM) and an amorphous structure in poly(CSM). The synthesized polymers exhibit a wide range of glass, melting, and flow transition temperatures, with some close to the physiological range, highlighting potential biomedical applications and polymer brushes development.
[1] Chamas, A., Moon, H., Zheng, J., Qiu, Y., Tabassum, T., Jang, J. H., Abu-Omar, M., Scott, S. L., & Suh, S. (2020). Degradation Rates of Plastics in the Environment. ACS Sustainable Chemistry and Engineering, 8(9), 3494–3511. DOI: 10.1021/ACSSUSCHEMENG.9B06635.
[2] Frank D. Gunstone. (2001). Chemical reactions of fatty acids with special reference to the carboxyl group. Eur. J. Lipid Sci. Technol., 103, 307–314. DOI: 10.1002/1438-9312(200105)103:5%3C307::AID-EJLT307%3E3.0.CO;2-D.
[3] Demchuk, Z., Kirianchuk, V., Kingsley, K., Voronov, S., & Voronov, A. (2018). Plasticizing and Hydrophobizing Effect of Plant Oil-Based Acrylic Monomers in Latex Copolymers with Styrene and Methyl Methacrylate. International Journal of Theoretical and Applied Nanotechnology. DOI: 10.11159/IJTAN.2018.005.
[4] Demchuk, Z., Shevchuk, O., Tarnavchyk, I., Kirianchuk, V., Kohut, A., Voronov, S., & Voronov, A. (2016). Free Radical Polymerization Behavior of the Vinyl Monomers from Plant Oil Triglycerides. ACS Sustainable Chemistry and Engineering, 4(12), 6974–6980. DOI: 10.1021/ACSSUSCHEMENG.6B01890.
[5] Demchuk, Z., Shevchuk, O., Tarnavchyk, I., Kirianchuk, V., Lorenson, M., Kohut, A., Voronov, S., & Voronov, A. (2016). Free-radical copolymerization behavior of plant-oil-based vinyl monomers and their feasibility in latex synthesis. ACS Omega, 1(6), 1374–1382. DOI: 10.1021/ACSOMEGA.6B00308.
[6] Gandini, A., & Lacerda, T. M. (2018). Polymers from Plant Oils. DOI: 10.1002/9781119555834.
[7] Haque, F. M., et al. (2022). Defining the Macromolecules of Tomorrow through Synergistic Sustainable Polymer Research. Chemical Reviews, 122(6), 6322–6373. DOI: 10.1021/ACS.CHEMREV.1C00173.
[8] Kantaros, A., & Ganetsos, T. (2023). From Static to Dynamic: Smart Materials Pioneering Additive Manufacturing in Regenerative Medicine. International Journal of Molecular Sciences, 24(21), 15748. DOI: 10.3390/IJMS242115748.
[9] Krist, S. (2020). Vegetable Fats and Oils. DOI: 10.1007/978-3-030-30314-3.
[10] Delatte, D., Kaya, E., Kolibal, L. G., Mendon, S. K., Rawlins, J. W., & Thames, S. F. (2014). J Appl Polym Sci, 131, 40249. DOI: 10.1002/app.40249.
[11] Macario, A., Giordano, G., Onida, B., Cocina, D., Tagarelli, A., & Giuffrè, A. M. (2010). Biodiesel production process by homogeneous/heterogeneous catalytic system using an acid–base catalyst. Applied Catalysis A: General, 378(2), 160–168. DOI: 10.1016/J.APCATA.2010.02.016.
[12] Popadyuk, N., Popadyuk, A., Kohut, A., & Voronov, A. (2016). Thermoresponsive latexes for fragrance encapsulation and release. International Journal of Cosmetic Science, 38(2), 139–147. DOI: 10.1111/ICS.12267.
[13] Roy, I., & Gupta, M. N. (2003). Smart Polymeric Materials: Emerging Biochemical Applications. Chemistry & Biology, 10(12), 1161–1171. DOI: 10.1016/J.CHEMBIOL.2003.12.004.
[14] Satyarthi, J. K., Srinivas, D., & Ratnasamy, P. (2011). Hydrolysis of vegetable oils and fats to fatty acids over solid acid catalysts. Applied Catalysis A: General, 391(1–2), 427–435. DOI: 10.1016/J.APCATA.2010.03.047.
[15] Sloutski, A., & Cohn, D. (2023). Reverse thermo-responsive biodegradable shape memory-displaying polymers. Polymer, 267, 125640. DOI: 10.1016/J.POLYMER.2022.125640.
[16] Stetsyshyn, Y., Raczkowska, J., Lishchynskyi, O., Awsiuk, K., Zemla, J., Dąbczyński, P., Kostruba, A., Harhay, K., Ohar, H., Orzechowska, B., Panchenko, Y., Vankevych, P., & Budkowski, A. (2018). Glass transition in temperature-responsive poly(butyl methacrylate) grafted polymer brushes. Journal of Materials Chemistry B, 6(11), 1613–1621. DOI: 10.1039/C8TB00088C.
[17] Tarnavchyk, I., Popadyuk, A., Popadyuk, N., & Voronov, A. (2015). Synthesis and Free Radical Copolymerization of a Vinyl Monomer from Soybean Oil. ACS Sustainable Chemistry and Engineering, 3(7), 1618–1622. DOI: 10.1021/ACSSUSCHEMENG.5B00312.
[18] Yuan, L., Wang, Z., Trenor, N. M., & Tang, C. (2015). Robust amidation transformation of plant oils into fatty derivatives for sustainable monomers and polymers. Macromolecules, 48(5), 1320–1328. DOI: 10.1021/ACS.MACROMOL.5B00091.
[19] Yuan, L., Wang, Z., Trenor, N. M., & Tang, C. (2016). Amidation of triglycerides by amino alcohols and their impact on plant oil-derived polymers. Polymer Chemistry, 7(16), 2790–2798. DOI: 10.1039/C6PY00048G.
[20] Zhu, Y., Romain, C., & Williams, C. K. (2016). Sustainable polymers from renewable resources. Nature, 540(7633), 354–362. DOI: 10.1038/NATURE21001.
- Щоб додати коментар, увійдіть або зареєструйтесь