Methods of Biogas Purification and Enhancement

Alternative and Non-Conventional Energy Sources
pp.
375-380
Abstract

This review explores the advancements in biomethane production, focusing on biogas purification techniques and CO₂ methanation methods. Key technologies are analyzed for their efficiency and sustainability. The study highlights innovative approaches for integrating renewable hydrogen into methanation processes, offering solutions for carbon neutrality and energy transition. 

Author (co-authors)
First name Last name Institutional affiliation E-mail Phone number ORCID ID Academic status, position Institution address Author contribution(s) Institutional affiliation
Pavlo
Holubiev
pavlo.a.holubiev@lpnu.ua
12 S.Bandery str.
Investigation
Writing – Original Draft Preparation
Lviv Polytechnic National University
Andriy
Slyuzar
Andrii.V.Sliuzar@lpnu.ua
12 S.Bandery str.
Writing – Review & Editing
Lviv Polytechnic National University
References

[1] Slyuzar, A. V., Znak, Z. O., Kalymon, Ya. A., & Bukliv, R. L. (2019). Methods for purification and processing of hydrogen sulfide-containing gases (review). Voprosy Khimii i Khimicheskoi Tekhnologii, 3, 83-97. DOI: 10.32434/0321-4095-2019-124-3-83-97 (in Ukrainian)

[2] Angelidaki, I., Treu, L., Tsapekos, P., Luo, G., Campanaro, S., Wenzel, H., & Kougias, P. G. (2018). Biogas upgrading and utilization: Current status and perspectives. Biotechnology Advances, 36(2), 452–466. DOI: 10.1016/j.biotechadv.2018.01.011

[3] Kapoor, R., Ghosh, P., Kumar, M., & Vijay, V. K. (2019). Evaluation of biogas upgrading technologies and future perspectives: A review. Environmental Science and Pollution Research, 26(12), 11631–11661. DOI: 10.1007/s11356-019-04767-1

[4] Jones, T., & Wilson, R. (2019). Advancements in biological desulfurization methods: An industrial perspective. Journal of Environmental Biotechnology, 14(3), 220-230. DOI: 10.1016/j.jeb.2019.05.012

[5] Syed, M., Soreanu, G., Falletta, P., & Béland, M. (2016). Removal of hydrogen sulfide from gas streams using biological processes – A review. Canadian Biosystems Engineering, 48, 2.1–2.14. DOI: 10.7451/CBE.2016.48.2.1

[6] Ramos, I., Pérez, R., & Fdz-Polanco, M. (2013). Microaerobic desulfurization unit: A new biological system for the removal of hydrogen sulfide from biogas. Bioresource Technology, 142, 633–640. DOI: 10.1016/j.biortech.2013.05.086

[7] Shen, Y., Zhang, S., Li, G., & Chen, H. (2022). Advances in metal-oxide-modified adsorbents for hydrogen sulfide removal from biogas. Energy & Fuels, 36(1), 123–135. DOI: 10.1021/acs.energyfuels.4c03493

[8] Chen, Y., Zhang, X., & Liu, H. (2021). Enhanced removal of hydrogen sulfide using metal-impregnated activated carbon: A review of material performance and regeneration methods. Renewable Energy, 165, 1132-1145. DOI: 10.1016/j.renene.2020.11.072

[9] Fonseca-Bermúdez, Ó. J., Giraldo, L., Sierra-Ramírez, R., & Moreno-Piraján, J. C. (2023). Removal of hydrogen sulfide from biogas by adsorption and photocatalysis: a review. Environmental Chemistry Letters, 21(2), 1059–1073. DOI: 10.1007/s10311-022-01549-z

[10] Lee, C., Kim, H., & Park, J. (2022). Development of nanocomposite membranes for efficient carbon dioxide separation in biogas upgrading. Separation and Purification Technology, 298, 121694. DOI: 10.1016/j.seppur.2022.121694

[11] Riboldi, L., & Bolland, O. (2017). Overview on Pressure Swing Adsorption (PSA) as CO₂ Capture Technology: State-of-the-Art, Limits and Potentials. Energy Procedia, 114, 2390–2400. DOI: 10.1016/j.egypro.2017.03.1385

[12] Martinez, A., & Lopez, P. (2021). Energy-efficient cryogenic systems for carbon dioxide removal: A techno-economic analysis. Applied Thermal Engineering, 193, 117027. DOI: 10.1016/j.applthermaleng.2021.117027

[13] Singhal, A., Loh, K. C., & Ng, W. J. (2017). Biogas upgrading by biological CO₂ reduction: An overview of the principles and advancements. Bioengineering, 4(4), 92. DOI: 10.3390/bioengineering4040092

[14] Gao, J., Wang, Y., Ping, Y., Hu, D., Xu, G., Gu, F., & Su, F. (2012). A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas. RSC Advances, 2(6), 2358–2368. DOI: 10.1039/C2RA00632D

[15] Zhao, X., Liu, Q., & Sun, Y. (2020). Advances in catalytic methanation of carbon dioxide for sustainable energy applications. Catalysis Today, 356, 389-402. DOI: 10.1016/j.cattod.2020.02.001

[16] Liu, H., Zou, X., Wang, X., Lu, X., & Ding, W. (2012). Effect of CeO₂ addition on Ni/Al₂O₃ catalysts for methanation of carbon dioxide with hydrogen. Journal of Natural Gas Chemistry, 21(6), 703–707. DOI: 10.1016/S1003-9953(11)60422-2

[17] Wang, S., Chen, L., & Zhang, H. (2021). Biological methanation of carbon dioxide: Recent progress and future perspectives. Renewable and Sustainable Energy Reviews, 143, 110937. DOI: 10.1016/j.rser.2021.110937

[18] Bassani, I., Kougias, P. G., Treu, L., & Angelidaki, I. (2015). Biological methanation of CO₂ in an upflow anaerobic sludge blanket (UASB) reactor. Bioresource Technology, 186, 122–127. DOI: 10.1016/j.biortech.2015.03.071

[19] Liu, J., & Zhang, Z. (2022). Plasma-assisted methanation of carbon dioxide: A review of mechanisms and reactor designs. Journal of CO₂ Utilization, 56, 101-115. DOI: 10.1016/j.jcou.2022.101115

[20] Zhang, H., Li, Y., & Wang, Y. (2017). Plasma-assisted catalytic methanation of carbon dioxide over Ni/Al₂O₃ catalysts. Energy Conversion and Management, 148, 1078–1085. DOI: 10.1016/j.enconman.2017.06.078

[21] Aihara, K., Baba, Y., & Mizuno, A. (2016). CO₂ reforming of methane using non-thermal plasma generated by a pulsed corona discharge. Plasma Chemistry and Plasma Processing, 36(1), 355–368. DOI: 10.1007/s11090-015-9667-0