AgInS2 and CuInS2 stable colloids were prepared and the photoluminescence and absorption spectra of these nanoparticles were obtained. AgInS2 nanocomposite films were made by the layer-by-layer deposition method. It was found that 4-nitrophenol significantly reduces the photoluminescence intensity of AgInS2 and CuInS2 even at the lowest concentration of 0.1 mg/l.
[1] Yuan, B., Cai, X., Fang, X., Wang, D., Zhu, R., Cao, S., Wu, M., & Zhu, Q. (2020). One-step synthesis of water-soluble red AgInS₂ nanocrystals with high photocatalytic hydrogen production activity. Solid State Sciences, 109, 106408. ISSN 1293-2558. DOI: 10.1016/j.solidstatesciences.2020.106408.
[2] Agarwal, K., Rai, H., & Mondal, S. (2023). Quantum dots: an overview of synthesis, properties, and applications. Materials Research Express, 10, 062001. DOI: 10.1088/2053-1591/acda17.
[3] Sung, Y., Chang, J., Choi, S. et al. (2024). Synthesis Strategies and Applications of Non-toxic Quantum Dots. Korean Journal of Chemical Engineering, 41, 3317–3343. DOI: 10.1007/s11814-024-00279-y.
[4] Bergstrom Mann, P., Afzal, K., Long, N. J., Thanouc, M., & Green, M. (2019). A glassware-free combinatorial synthesis of green quantum dots using bubble wrap. RSC Advances, 9, 16851–16855. DOI: 10.1039/C9RA02018G.
[5] Zhai, M., Wang, F., & Du, H. (2017). Transition-Metal Phosphide–Carbon Nanosheet Composites Derived from Two-Dimensional Metal-Organic Frameworks for Highly Efficient Electrocatalytic Water-Splitting. ACS Applied Materials & Interfaces, 9(46), 40171–40179. DOI: 10.1021/acsami.7b10680.
[6] Rahayu, S. U., Wang, Y. R., & Lee, M. W. (2024). Enhanced Photovoltaic Performance of Heavy-Metal-Free AgInS₂ Quantum Dot-Sensitized Solar Cells Using a Facile SILAR Method. Journal of Electronic Materials, 53, 7239–7249. DOI: 10.1007/s11664-024-11365-6.
[7] Xue, T., Shi, Y., Guo, J., Guo, M., & Yan, Y. (2021). Preparation of AgInS₂ quantum dots and their application for Pb²⁺ detection based on fluorescence quenching effect. Vacuum, 193, 110514. ISSN 0042-207X. DOI: 10.1016/j.vacuum.2021.110514.
[8] Sawant, R., Chakraborty, S., Papalkar, A., Awale, A., & Chaskar, A. (2024). Low-dimensional fluorescent sensors for nitro explosive detection: A review. Materials Today Chemistry, 37, 101983. ISSN 2468-5194. DOI: 10.1016/j.mtchem.2024.101983.
[9] Doskaliuk, N., Babyuk, Y., Hotynchan, A., Okrepka, G., & Khalavka, Y. (2020). Tuning Optical Properties of AgInS₂ Quantum Dots by the Change of Ag-In Stoichiometry for their Light-emitting Applications. 2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP), 01NP05-1–01NP05-3. DOI: 10.1109/NAP51477.2020.9309659.
[10] Kopach, V., Khalavka, Y., Yosypenko, Y., Doskaliuk, N., Kopach, O., Dmytruk, M., Dmytruk, I., & Dmytruk, A. (2024). Accelerated Charge Transfer in the AgInS₂-Polymer Layer-by-Layer Films. Luminescence, 39(10), e70001. DOI: 10.1002/bio.70001. PMID: 39462774.
[11] Freeman, R., Finder, T., Bahshi, L., Gill, R., & Willner, I. (2012). Functionalized CdSe/ZnS QDs for the Detection of Nitroaromatic or RDX Explosives. Advanced Materials, 24(48), 6416–6421. DOI: 10.1002/adma.201202793.