This study investigates the mechanical properties of modified biopolymer-based composites reinforced with organic (collagen, keratin) and inorganic (silicates, cellulose derivatives) additives. Results demonstrate enhanced tensile strength and elongation at break, highlighting the potential of optimized additive concentrations for improving bioplastic durability. These findings contribute to the development of sustainable, high-performance biodegradable materials.
[1] Avérous, L., & Pollet, E. (2012). Biopolymers: Challenges and opportunities for commercial application. Advanced Materials, 24(33), 4220–4237.
[2] Perego, G., Cella, G. D., & Bastioli, C. (1996). Mechanical properties of polylactic acid (PLA) composites: A review. Composites Part B: Engineering, 27(2), 175–185.
[3] Jamshidian, M., Tehrany, E. A., Imran, M., Jacquot, M., & Desobry, S. (2010). Polylactic acid: Synthesis, properties, and applications. Biotechnology Journal, 5(6), 578–602.
[4] Kunasundari, B., & Sudesh, K. (2011). Advances in polyhydroxyalkanoate (PHA) production. Journal of Biotechnology, 156(4), 287–298.
[5] Chen, G. Q., & Patel, M. K. (2012). Polyhydroxyalkanoates (PHA) for tissue engineering. Materials Science and Engineering: C, 29(4), 1253–1260.
[6] Franken, L., & Dijkstra, P. (2012). The structure, functions, and mechanical properties of keratin. JOM Journal of the Minerals, Metals and Materials Society, 64(3), 282–288.
[7] Sun, Y., & Zhang, Y. (2007). Mechanical properties of native and cross-linked type I collagen fibrils. Biophysical Journal, 92(10), 3492–3500.
[8] Ghorpade, V. M., Hanna, M. A., & Darbha, P. (2001). Biodegradable casein films: Preparation and characterization. Biomacromolecules, 2(2), 295–299.
[9] Gupta, P., & Nayak, K. K. (2019). Protein-based materials: From source to applications. Materials Science and Engineering: R: Reports, 137, 100377.
[10] Fratzl, P. (2008). Fibrillar structure and mechanical properties of collagen. Journal of Structural Biology, 122(1–2), 119–122.
[11] Shen, Z. L., Dodge, M. R., Kahn, H., Ballarini, R., & Eppell, S. J. (2008). Stress-strain experiments on individual collagen fibrils. Biophysical Journal, 95(8), 3956–3963.
[12] Elvin, C. M., Carr, A. G., Huson, M. G., Maxwell, J. M., Pearson, R. D., Vuocolo, T., Liyou, N. E., Wong, D. C., Merritt, D. J., & Dixon, N. E. (2005). Synthesis and properties of crosslinked recombinant pro-resilin. Nature, 437(7061), 999–1002.
[13] Lazaris, A., Arcidiacono, S., Huang, Y., Zhou, J. F., Duguay, F., Chretien, N., Welsh, E. A., Soares, J. W., & Karatzas, C. N. (2002). Spider silk fibers spun from soluble recombinant silk produced in mammalian cells. Science, 295(5554), 472–476.
[14] Sun, J., & Bhushan, B. (2012). Hierarchical structure and mechanical properties of nacre: A review. RSC Advances, 2(20), 7617–7632.
[15] Vepari, C., & Kaplan, D. L. (2007). Silk as a biomaterial. Progress in Polymer Science, 32(8–9), 991–1007.
[16] Keten, S., Xu, Z., Ihle, B., & Buehler, M. J. (2010). Nanoconfinement controls stiffness, strength and mechanical toughness of beta-sheet crystals in silk. Nature Materials, 9(4), 359–367.
[17] Cranford, S. W., Tarakanova, A., Pugno, N. M., & Buehler, M. J. (2012). Nonlinear material behaviour of spider silk yields robust webs. Nature, 482(7383), 72–76.
[18] Buehler, M. J. (2006). Nature designs tough collagen: Explaining the nanostructure of collagen fibrils. Proceedings of the National Academy of Sciences, 103(33), 12285–12290.
[19] Wegst, U. G. K., Bai, H., Saiz, E., Tomsia, A. P., & Ritchie, R. O. (2015). Bioinspired structural materials. Nature Materials, 14(1), 23–36.
[20] Liu, Z., Zhang, Z., & Ritchie, R. O. (2018). Structural orientation and anisotropy in biological materials: Functional designs and mechanics. Advanced Functional Materials, 28(41), 1803732.
[21] El Marouazi, H., van Der Schueren, B., Favier, D., Bolley, A., Dagorne, S., Dintzer, T., & Janowska, I. (2021). Great enhancement of mechanical features in PLA based composites containing aligned few layer graphene (FLG), the effect of FLG loading, size, and dispersion on mechanical and thermal properties. Journal of Applied Polymer Science, 138(44), 51300.
[22] Liu, Y. Y., Blazquez, J. P. F., Yin, G. Z., Wang, D. Y., Llorca, J., & Echeverry-Rendón, M. (2023). A strategy to tailor the mechanical and degradation properties of PCL-PEG-PCL based copolymers for biomedical application. European Polymer Journal, 198, 112388.
[23] Sumrith, N., Rangappa, S. M., Dangtungee, R., Siengchin, S., Jawaid, M., & Pruncu, C. I. (2019). Biopolymers-based nanocomposites: Properties and applications. Bio-based Polymers and Nanocomposites: Preparation, Processing, Properties & Performance, 255–272.
[24] Averous, L., & Moro, L. (2019). Enhancing mechanical properties of biopolymers through additive incorporation. Polymer Engineering & Science, 59(7), 1372–1383.
[25] Habibi, Y., Lucia, L. A., & Rojas, O. J. (2010). Nanocomposites in biopolymers: Enhancing mechanical properties. Progress in Polymer Science, 35(12), 1502–1515.
- Щоб додати коментар, увійдіть або зареєструйтесь