This study explores biochar production from Miscanthus waste biomass via oxidative pyrolysis at 600°C. The resulting biochar shows high stability, enhanced moisture retention, and a significant calorific value. Its superior physicochemical properties, including high fixed carbon content and specific surface area, make it a promising material for soil and energy applications.
[1] Tang, J., Zhu, W., Kookana, R., & Katayama, A. (2013). Characteristics of biochar and its application in remediation of contaminated soil. Journal of Bioscience and Bioengineering, 116(6), 653–659. DOI: 10.1016/j.jbiosc.2013.07.017
[2] Wei, J., Tu, C., Yuan, G., Liu, Y., Bi, D., Xiao, L., & Zhang, X. (2019). Assessing the effect of pyrolysis temperature on the molecular properties and copper sorption capacity of a halophyte biochar. Environmental Pollution, 251, 56–65. DOI: 10.1016/j.envpol.2019.04.128
[3] Yadav, V., Karak, T., Singh, S., Singh, A. K., & Khare, P. (2019). Benefits of biochar over other organic amendments: Responses for plant productivity (Pelargonium graveolens L.) and nitrogen and phosphorus losses. Industrial Crops and Products, 131, 96–105. DOI: 10.1016/j.indcrop.2019.01.017
[4] Liu, Q., Zhang, Y., Liu, B., Amonette, J. E., Lin, Z., Liu, G., Ambus, P., & Xie, Z. (2018). How does biochar influence soil N cycle? A meta-analysis. Plant and Soil, 426, 211–225. DOI: 10.1007/s11104-018-3619-4
[5] Deshoux, M., Sadet-Bourgeteau, S., Gentil, S., & Prévost-Bouré, N. C. (2023). Effects of biochar on soil microbial communities and nutrient cycling: A review. Soil Biology and Biochemistry, 161, 108354. DOI: 10.1016/j.soilbio.2022.108354
[6] Kracmarova-Farren, M., Alexova, E., Kodatova, A., et al. (2024). Biochar-induced changes in soil microbial communities: A comparison of two feedstocks and pyrolysis temperatures. Environmental Microbiome, 19, 87. DOI: 10.1186/s40793-024-00631
[7] Pidlisnyuk, V., Newton, R. A., & Mamirova, A. (2021). Miscanthus biochar value chain: A review. Journal of Environmental Management, 290, 112611. DOI: 10.1016/j.jenvman.2021.112611
[8] McLaughlin, H., & Fawzy, S. (2025). Factors influencing biochar properties and relationships with soil applications. In Biochar Ecotechnology for Sustainable Agriculture and Environment (pp. 181–203). Elsevier.
[9] Tomczyk, A., Sokolowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Biotechnology, 19, 191–215. DOI: 10.1007/s11157-019-09543-1
[10] Klyus, V., Lobunets, Y., Zurian, O., Chetveryk, H., & Masliukova, Z. (2024). Pyrolysis furnace of continuous combustion. Vidnovluvana Energetika, 79(4), 145–151. DOI: 10.36296/1819-8058.2024.4(79).145-151
[11] Mamirova, A., & Pidlisnyuk, V. (2024). The economic and environmental aspects of Miscanthus × giganteus phytomanagement applied to non-agricultural land. Agronomy, 14(4), 791. DOI: 10.3390/agronomy14040791
[12] Rasse, D. P., Budai, A., O’Toole, A., Ma, X., Rumpel, C., & Abiven, S. (2017). Persistence in soil of Miscanthus biochar in laboratory and field conditions. PLoS One, 12(9), e0184383. DOI: 10.1371/journal.pone.0184383
[13] Nagel, K., Hoilett, N. O., Mottaleb, M. A., Meziani, M. J., Wistrom, J., & Bellamy, M. (2019). Physicochemical characteristics of biochars derived from corn, hardwood, miscanthus, and horse manure biomasses. Communications in Soil Science and Plant Analysis, 50(8), 987–1002. DOI: 10.1080/00103624.2019.1600519
[14] Newton, R. A., Pidlisnyuk, V., Pohl, R., Mamirova, A., & Zschunke, T. (2024). Impact of cultivation conditions on physicochemical characteristics of Miscanthus × giganteus biomass. International Journal of Environmental Science and Technology, 1–14. DOI: 10.1007/s13762-024-05604-w
- Щоб додати коментар, увійдіть або зареєструйтесь