Enzymatic synthesis is one of the most fascinating topics in asymmetric catalysis. This method is one of the most efficient, widely applied, and, in many cases, universal for the resolution of racemic mixtures. It allows for producing various organic compounds in enantiomerically pure form relatively easily under mild conditions and with quantitative yields.
[1] U.S. Food and Drug Administration. (1992). Development of New Stereoisomeric Drugs. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/development-new-stereoisomeric-drugs
[2] European Medicines Agency. (1993). Investigation of Chiral Active Substances. https://www.ema.europa.eu/en/documents/scientific-guideline/investigation-chiral-active-substances_en.pdf
[3] Calcaterra, A. D., & Acquarica, I. (2018). The market of chiral drugs: Chiral switches versus de novo enantiomerically pure compounds. Journal of Pharmaceutical and Biomedical Analysis, 147, 323–340. DOI: 10.1016/j.jpba.2017.07.008
[4] Caner, H., Groner, E., & Levy, L. (2004). Trends in the development of chiral drugs. Drug Discovery Today, 9(3), 105–110. DOI: 10.1016/S1359-6446(03)02904-0
[5] Hassan, A. G., & Aboul-Eneinb, Y. (2004). Lipase-mediated chiral resolution of racemates in organic solvents. Tetrahedron: Asymmetry, 15(21), 3331–3351. DOI: 10.1016/j.tetasy.2004.09.019
[6] Kolodiazhna, A. O., & Kolodiazhnyi, O. I. (2023). Chiral organophosphorus pharmaceuticals: Properties and Application. Symmetry, 15, 1550. DOI: 10.3390/sym15081550
[7] Kazlauskas, R. J., Weissfloch, A. N. E., Rappaport, A. T., & Cuccia, L. A. (1991). A rule to predict which enantiomer of a secondary alcohol reacts faster in reactions catalyzed by cholesterol esterase, lipase from Pseudomonas cepacia, and lipase from Candida rugosa. Journal of Organic Chemistry, 56, 2656–2665. DOI: 10.1021/jo00008a016
[8] Kolodiazhna, O. O., Kolodiazhna, A. O., & Kolodiazhnyi, O. I. (2013). Enzymatic preparation of (1S,2R)- and (1R,2S)-stereoisomers of 2-halocycloalkanols. Tetrahedron: Asymmetry, 24(1), 37–42. DOI: 10.1016/j.tetasy.2012.11.011
[9] Kolodyazhna, A. O., Verevka, O. V., & Kolodyazhnyi, O. I. (2019). Enzymatic Synthesis of 1,2-Aminocyclopentanol and 1,2-Diaminocyclopentane. Reports of the National Academy of Sciences of Ukraine, 8, 66–74. DOI: 10.15407/dopovidi2019.07.066
[10] Kucher, O. V., Kolodyazhnaya, A. O., Smolii, O. B., Boiko, O. I., Kubyshkin, V. S., Mykhailiuk, P. K., & Tolmachev, A. A. (2014). Enzymatic resolution of chroman-4-ol and its core analogues with Burkholderia cepacia lipase. Tetrahedron: Asymmetry, 25(6–7), 563–567. DOI: 10.1016/j.tetasy.2014.02.010
[11] Prysiazhnuk, D., Kolodiazhna, A., & Kolodiazhnyi, O. (2022). Сonvergent method for the determination of the absolute configurations of 2,3-dihydro-1H-inden-1-ols. Arkivoc, 23–32. DOI: 10.24820/ark.5550190.p011.835
[12] Kucher, O. V., Kolodyazhnaya, A. O., Smolii, O. B., Nazarenko, N. K., & Tolmachev, A. A. (2016). Lipase kinetic enantiomeric resolution of 1-heteroarylethanols Dedicated to the 25th anniversary of the Enamine enterprise. Tetrahedron: Asymmetry, 27(7–8), 341–345. DOI: 10.1016/j.tetasy.2016.02.012
[13] Kucher, O. V., Kolodiazhnaya, A. O., Smolii, O. B., Prisuazhnyk, D. V., Tolmacheva, K. A., Zaporozhets, O. A., Moroz, Y. S., Mykhailiuk, P. K., & Tolmachev, A. A. (2014). Enzyme-catalyzed kinetic resolution of 2,2,2-trifluoro-1-(heteroaryl)ethanols: Experimental and docking studies. European Journal of Organic Chemistry, 34, 7692–7698. DOI: 10.1002/ejoc.201403013
[14] Kolodiazhnyi, O. I., Kolodiazhna, A. O., Faiziiev, O., & Gurova, Y. (2024). Enzymatic Deracemization of Fluorinated Arylcarboxylic Acids: Chiral Enzymatic Analysis and Absolute Stereochemistry Using Chiral HPLC. Symmetry, 16(9), 1150. DOI: 10.3390/sym16091150
- Щоб додати коментар, увійдіть або зареєструйтесь