Preparation of Enantiomerically Pure 3-Heteryl-2-Methylpropanoic and 3-Heterylbutanoic Acids by Enzymatic Kinetic Resolution

Optimization of Biochemical Processes and Bioengineering
pp.
332-336
Анотація

A new approach has been developed for synthesizing important compounds with potential biological activity − enantiomerically pure 3-heteryl-2-methylpropanoic and 3-heterylbutanoic acids. The kinetic dynamic enzymatic resolution methodology was applied at key synthesis stages. A dual biocatalytic purification method was employed to achieve a high degree of optical purity of the obtained products. The resulting amines are promising building blocks for the development and production of new pharmaceuticals and biologically active compounds.

Автор (співавтори)
Ім'я Прізвище Приналежність до організації E-mail Номер телефону ORCID ID Вчене звання, посада Адреса організації Внесок автора(ів) Приналежність до організації
Oleh
Faiziiev
O.faiziiev@bpci.kiev.ua
аспірант
Academician Kukhar Str. 1, Kyiv-94, 02094, Ukraine
Концептуалізація
Формальний аналіз
Дослідження
Методологія
Ресурси
Візуалізація
Написання – оригінальний рукопис
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine
Anastasiia
Kolodiazhna
Nastya_k11@ukr.net
0000-0002-7990-7830
Droctor of Science, head of the laboratory
Academician Kukhar Str. 1, Kyiv-94, 02094, Ukraine
Концептуалізація
Формальний аналіз
Методологія
Адміністрування проєкту
Координація і контроль
Написання – перегляд і редагування
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine
Dmytro
Prysiazhnuk
a_vot_i_pdv@ukr.net
Philosophy doctor, Junior Researcher
Academician Kukhar Str. 1, Kyiv-94, 02094, Ukraine
Концептуалізація
Формальний аналіз
Методологія
Адміністрування проєкту
Написання – перегляд і редагування
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine
References

[1] Shchekotikhin, A. (2020). Heterocyclic Compounds in Medicinal Chemistry. Chemistry of Heterocyclic Compounds, 56, 625. DOI: 10.1007/s10593-020-02711-7

[2] Gomtsyan, A. (2012). Heterocycles in drugs and drug discovery. Chemistry of Heterocyclic Compounds, 48, 7–10. DOI: 10.1007/s10593-012-0960-z

[3] Luo, L., Yao, J.-P., Yang, L., Feng, Ch.-L., Tang, W., Wang, G.-F., Zuo, J.-P., & Lu, W. (2010). Design and synthesis of novel benzimidazole derivatives as inhibitors of hepatitis B virus. Bioorganic & Medicinal Chemistry, 18(14), 5048–5055. DOI: 10.1016/j.bmc.2010.05.076

[4] Hallinan, E. A., Hagen, T. J., Tsymbalov, S., & Husa, R. K., Lee, A. C. (1996). Aminoacetyl Moiety as a Potential Surrogate for Diacylhydrazine Group of SC-51089, a Potent PGE2 Antagonist, and Its Analogs. Journal of Medicinal Chemistry, 39(2), 609–613. DOI: 10.1021/jm950454k

[5] Leschke, Ch., Elz, S., Garbarg, l. M., & Schunack, W. (1995). Synthesis and Histamine H1 Receptor Agonist Activity of a Series of 2-Phenylhistamines, 2-Heteroarylhistamines, and Analogues. Journal of Medicinal Chemistry, 38(8), 1287–1294. DOI: 10.1021/jm00008a007

[6] Miyatake, K., Yoshio, T., Ayako, Y., Hidenori, O., Shinya, O., Kohji, K., Kazuo, H. T., Takeda, S., Akamatsu, H., Itoh, H., Misumi, K., Inoue, S., & Takag, T. (2008). Bioorganic and Medicinal Chemistry, 16(5), 2261–2275. DOI: 10.1016/j.bmc.2007.11.074

[7] Hack, S., Wörlein, B., Höfner, G., Pabel, J., & Wanner, K. T. (2011). Development of imidazole alkanoic acids as mGAT3 selective GABA uptake inhibitors. European Journal of Medicinal Chemistry, 46(5), 1483–1498. DOI: 10.1016/j.ejmech.2011.01.042

[8] Ghorai, P., Kraus, A., Keller, M., Götte, C., Igel, P., Schneider, E., Schnell, D., Bernhardt, G., Dove, S., Elz, S., Seifert, R., & Buschauer, A. (2008). Acylguanidines as Bioisosteres of Guanidines: NG-Acylated Imidazolylpropylguanidines, a New Class of Histamine H2 Receptor Agonists. Journal of Medicinal Chemistry, 51(22), 7193–7204. DOI: 10.1021/jm800841w

[9] U.S. Food and Drug Administration. (1992). Development of New Stereoisomeric Drugs. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/development-new-stereoisomeric-drugs

[10] European Medicines Agency. (1993). Investigation of Chiral Active Substances. https://www.ema.europa.eu/en/documents/scientific-guideline/investigation-chiral-active-substances_en.pdf

[11] Calcaterra, A. D., & Acquarica, I. (2018). The market of chiral drugs: Chiral switches versus de novo enantiomerically pure compounds. Journal of Pharmaceutical and Biomedical Analysis, 147, 323–340. DOI: 10.1016/j.jpba.2017.07.008

[12] Caner, H., Groner, E., & Levy, L. (2004). Trends in the development of chiral drugs. Drug Discovery Today, 9, 105–110. DOI: 10.1016/S1359-6446(03)02904-0

[13] Zhong, H., Shevlin, M., & Chirik, P. J. (2020). Cobalt-Catalyzed Asymmetric Hydrogenation of α,β-Unsaturated Carboxylic Acids by Homolytic H₂ Cleavage. Journal of the American Chemical Society, 142(11), 5272–5281. DOI: 10.1021/jacs.9b13876

[14] Aycock, R. A., Wang, H., & Jui, N. T. (2017). A mild catalytic system for radical conjugate addition of nitrogen heterocycles. Chemical Science, 8(4), 3121–3125. DOI: 10.1039/C7SC00243B

[15] Kolodiazhnyi, O. I., Kolodiazhna, A. O., Faiziiev, O., & Gurova, Y. (2024). Enzymatic Deracemization of Fluorinated Arylcarboxylic Acids: Chiral Enzymatic Analysis and Absolute Stereochemistry Using Chiral HPLC. Symmetry, 16(9), 1150. DOI: 10.3390/sym16091150

[16] Kolodiazhna, А. О., Faiziiev, О. О., & Kolodiazhnyi, О. І. (2023). Fermentative Kinetic Deracemization of Fluorinated 3-Arylalkanoic Acids. Доповіді НАН України, 5, 37–46. DOI: 10.15407/dopovidi2023.05.037

[17] Kolodiazhna, А. О., & Faiziiev, О. О. (2023). Fluorine-Containing 3-Arylalkanoic Acids. In A. I. Vovk (Ed.), Bioaktyvni spoluky, novi rechovyny i materialy (pp. 66–72). Interservis.