QM/MM Study of the Cyclization Reaction Mechanism for Pimelic o-Aminobenzamide Histone Deacetylase (HDAC) Inhibitor 4b

Development, Energy and Resource Saving in the Chemical and Food Technologies
pp.
123-131
Abstract

The detailed mechanism of the intramolecular cyclization reaction of pimelic o-aminobenzamide histone deacetylase (HDAC) inhibitor 4b (N1-(2-aminophenyl)-N7-phenylheptanediamide) was studied using Molecular Dynamics (MD) simulations for conformational sampling and a hybrid quantum mechanical/molecular mechanical (QM/MM) method for the energy profiling during the reaction progress, as well as for verifying the topology of the intermediates.

Author (co-authors)
First name Last name Institutional affiliation E-mail Phone number ORCID ID Academic status, position Institution address Author contribution(s) Institutional affiliation
Olena
Klenina
olena_klenina@yahoo.com
0000-0002-8946-3698
Associate Professor
Pekarska Str., 69
Investigation
Methodology
Writing – Original Draft Preparation
Danylo Halytsky Lviv National Medical University
Laura
Márquez Cantudo
laura.marquezcantudo@ceu.es
0000-0002-1618-1366
PhD student
Boadilla del Monte, Urbanización Montepríncipe, 28668, Spain
Investigation
Methodology
Universidad San Pablo CEU
Claire
Coderch
claire.coderchboue@ceu.es
0000-0001-7229-8289
Profesor Titular
Boadilla del Monte, Urbanización Montepríncipe, 28668, Spain
Data Curation
Methodology
Supervision
Writing – Review & Editing
Universidad San Pablo CEU
Beatriz
de Pascual-Teresa Fernandez
bpaster@ceu.es
0000-0002-1101-0373
Profesor Catedrático
Boadilla del Monte, Urbanización Montepríncipe, 28668, Spain
Conceptualization
Project Administration
Supervision
Writing – Review & Editing
Universidad San Pablo CEU
References

[1] Seto, E., & Yoshida, M. (2024). Erasers of Histone Acetylation: The Histone Deacetylase Enzymes. Cold Spring Harbor Perspectives in Biology, 6(4), a018713. DOI: 10.1101/cshperspect.a018713

[2] Liang, T., Wang, F., Elhassan, R. M., Cheng, Y., Tang, X., Chen, W., ... & Hou, X. (2023). Targeting histone deacetylases for cancer therapy: Trends and challenges. Acta Pharmaceutica Sinica B, 13(6), 2425–2463. DOI: 10.1016/j.apsb.2023.02.007

[3] Suraweera, A., O’Byrne, K. J., & Richard, D. J. (2018). Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: achieving the full therapeutic potential of HDACi. Frontiers in Oncology, 8, 92. DOI: 10.3389/fonc.2018.00092

[4] Gujral, P., Mahajan, V., Lissaman, A. C., & Ponnampalam, A. P. (2020). Histone acetylation and the role of histone deacetylases in normal cyclic endometrium. Reproductive Biology and Endocrinology, 18, 1–11. DOI: 10.1186/s12958-020-00637-5

[5] Glozak, M. A., Sengupta, N., Zhang, X., & Seto, E. (2005). Acetylation and deacetylation of non-histone proteins. Gene, 363, 15–23. DOI: 10.1016/j.gene.2005.09.010

[6] Thomas, E. A., Coppola, G., Desplats, P. A., Tang, B., Soragni, E., Burnett, R., ... & Gottesfeld, J. M. (2008). The HDAC inhibitor 4b ameliorates the disease phenotype and transcriptional abnormalities in Huntington's disease transgenic mice. Proceedings of the National Academy of Sciences, 105(40), 15564–15569. DOI: 10.1073/pnas.0804249105

[7] Jia, H., Morris, C. D., Williams, R. M., Loring, J. F., & Thomas, E. A. (2015). HDAC inhibition imparts beneficial transgenerational effects in Huntington's disease mice via altered DNA and histone methylation. Proceedings of the National Academy of Sciences, 112(1), E56–E64. DOI: 10.1073/pnas.1415195112

[8] Grabczyk, E., Mancuso, M., & Sammarco, M. C. (2007). A persistent RNA·DNA hybrid formed by transcription of the Friedreich ataxia triplet repeat in live bacteria, and by T7 RNAP in vitro. Nucleic Acids Research, 35(16), 5351–5359. DOI: 10.1093/nar/gkm589

[9] Herman, D., Jenssen, K., Burnett, R., Soragni, E., Perlman, S. L., & Gottesfeld, J. M. (2006). Histone deacetylase inhibitors reverse gene silencing in Friedreich's ataxia. Nature Chemical Biology, 2(10), 551–558. DOI: 10.1038/nchembio815

[10] Soragni, E., Chou, C. J., Rusche, J. R., & Gottesfeld, J. M. (2015). Mechanism of action of 2-aminobenzamide HDAC inhibitors in reversing gene silencing in Friedreich’s ataxia. Frontiers in Neurology, 6, 44. DOI: 10.3389/fneur.2015.00044

[11] Beconi, M., Aziz, O., Matthews, K., Moumné, L., O’Connell, C., Yates, D., ... & Beaumont, V. (2012). Oral administration of the pimelic diphenylamide HDAC inhibitor HDACi 4b is unsuitable for chronic inhibition of HDAC activity in the CNS in vivo. PLoS One, 7(9), e44498. DOI: 10.1371/journal.pone.0044498

[12] Schrödinger Release 2023-4: LigPrep, Schrödinger, LLC, New York, NY, 2023.

[13] Frisch, M. J., Trucks, G. W., Schlegel, H. B., et al. (2009). Gaussian 09 Revision C 01 Gaussian 09 Revis B01. Gaussian Inc., Wallingford.

[14] Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2001). Antechamber: an accessory software package for molecular mechanical calculations. Journal of the American Chemical Society, 222(1), 2001.

[15] Case, D. A., Duke, R. E., Walker, R. C., et al. (2022). AMBER 2022. University of California, San Francisco, United States – California.

[16] Ryckaert, J. P., Ciccotti, G., & Berendsen, H. J. (1977). Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341. DOI: 10.1016/0021-9991(77)90098-5

[17] Miyamoto, S., & Kollman, P. A. (1992). Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. Journal of Computational Chemistry, 13(8), 952–962. DOI: 10.1002/jcc.540130805

[18] Roe, D. R., & Cheatham III, T. E. (2013). PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. DOI: 10.1021/ct400341p

[19] Senn, H. M., & Thiel, W. (2009). QM/MM methods for biomolecular systems. Angewandte Chemie International Edition, 48(7), 1198–1229. DOI: 10.1002/anie.200802019

[20] Gaus, M., Cui, Q., & Elstner, M. (2011). DFTB3: Extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB). Journal of Chemical Theory and Computation, 7(4), 931–948. DOI: 10.1021/ct100684s

[21] Gaus, M., Goez, A., & Elstner, M. (2013). Parametrization and benchmark of DFTB3 for organic molecules. Journal of Chemical Theory and Computation, 9(1), 338–354. DOI: 10.1021/ct300849w

[22] Alaqeel, S. I. (2017). Synthetic approaches to benzimidazoles from o-phenylenediamine: A literature review. Journal of Saudi Chemical Society, 21(2), 229–237. DOI: 10.1016/j.jscs.2016.08.001

[23] Boddapati, S. M., Bollikolla, H. B., Bhavani, K. G., Saini, H. S., Ramesh, N., & Jonnalagadda, S. B. (2023). Advances in synthesis and biological activities of quinazoline scaffold analogues: A review. Arabian Journal of Chemistry, 16(10), 105190. DOI: 10.1016/j.arabjc.2023.105190