On Techno-Economic Analysis of Rapid Filtration of Groundwater with High Iron Content

Ecology and Sustainable Development. Environmental Protection
pp.
441-445
Abstract

As a result of optimization procedure at variation of composition and degree of initial contamination, a set of bed height values is determined at which the reduced costs for equipment and operation are minimized. The critical concentration and service life of the bed at increased contamination are established.

Author (co-authors)
First name Last name Institutional affiliation E-mail Phone number ORCID ID Academic status, position Institution address Author contribution(s) Institutional affiliation
Vadym
Poliakov
vpoliakov.ihm@gmail.com
Prof., Dr.-Ing.
Kyiv, 8/4 Maria Kapnist Street
Conceptualization
Methodology
Writing – Original Draft Preparation
Institute of Hydromechanics of National Academy of Sciences of Ukraine
Serhii
Martynov
s.y.martynov@nuwm.edu.ua
Prof., Dr.-Ing.
st.Soborna
Conceptualization
Funding Acquisition
Methodology
Writing – Review & Editing
National University of Water and Environmental Engineering
References

[1]     Salimi, A. H., Shamshiri, A., Jaberi, E., Bonakdari, H., Akhbari, A., Delatolla, R., Hassanvand, M. R., Agharazi, M., Huang, Y. F., Ahmed, A. N., & Elshafie, A. (2022). Total iron removal from aqueous solution by using modified clinoptilolite. Ain Shams Eng. J., 13, 101495. DOI: 10.1016/j.asej.2021.05.009

[2]     Kruisdijk, E., van Breukelen, B. M., & van Halem, D. (2024). Simulation of rapid sand filters to understand and design sequential iron and manganese removal using reactive transport modelling. Water Research, 267, 122517. DOI: 10.1016/j.watres.2024.122517

[3]     Lima, L. A., Silva, Y. F., & Lima, P. L. T. (2021). Iron removal efficiency in irrigation water by a zeolite added to sand media filters. Desalin. Water Treat., 220, 241–245. DOI: 10.5004/dwt.2021.27024

[4]     Corbera-Rubio, F., Laureni, M., Koudijs, N., Müller, S., van Alen, T., Schoonenberg, F., Lücker, S., Pabst, M., van Loosdrecht, M. C. M., & van Halem, D. (2023). Meta-omics profiling of full-scale groundwater rapid sand filters explains stratification of iron, ammonium and manganese removals. Water Research, 233, 119805. DOI: 10.1016/j.watres.2023.119805

[5]     Tugay, A. M., Oleynyk, A. Ya., & Tugay, Y.A. (2004). Productivity of water intake wells under conditions of clogging. NUUEKH Press.

[6]     Poliakov, V. L., & Martynov, S. Yu. (2021). Mathematical modeling of physicochemical iron removal from groundwater at rapid filters. Chemical Engineering Science, 231, 116318. DOI: 10.1016/j.ces.2020

[7]     Poliakov, V. L., & Martynov, S. Yu. (2023). Technological modeling of physicochemical removal of iron from deep groundwater. Heliyon, 9(9). DOI: 10.1016/j.heliyon.2023.e20202

[8]     Martynov, S. Yu., & Poliakov, V. L. (2022). Experimental studies of iron transformations kinetics and autocatalysis during its physicochemical removal from underground water. Water Supply, 22(3), 2883–2895. DOI: 10.2166/ws.2021.428

[9]       Martynov, S. Yu., & Poliakov V. L. (2022). Experimental studies on the hydrodynamic properties of a deposit in rapid filters during physicochemical removal of iron from groundwater. Water Supply, 22(11), 7603–7617. DOI: 10.2166/ws.2022.305