Biocatalytic Method for the Synthesis of Enantiomerically Pure β-Methyl-phenylethylamines

Optimization of Biochemical Processes and Bioengineering
pp.
308-312
Abstract

A new method for the synthesis of important building blocks − enantiomerically pure β-methyl-phenylethylamines − has been developed. Kinetic dynamic enzymatic resolution methodology was applied at key stages of the synthesis. A double biocatalytic purification approach was used to achieve high optical purity of the obtained products. The resulting amines are promising building blocks for the development and production of new pharmaceuticals and biologically active compounds.

Author (co-authors)
First name Last name Institutional affiliation E-mail Phone number ORCID ID Academic status, position Institution address Author contribution(s) Institutional affiliation
Oleh
Faiziiev
O.faiziiev@bpci.kiev.ua
аспірант
UKRAINE, Kyiv, 1, Academician Kukhar Str.
Investigation
Methodology
Resources
Validation
Writing – Original Draft Preparation
Writing – Review & Editing
.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine
Anastasiia
Kolodiazhna
Nastya_k11@ukr.net
0000-0002-7990-7830
Droctor of Science, head of the laboratory
UKRAINE, Kyiv, 1, Academician Kukhar Str.
Conceptualization
Data Curation
Formal Analysis
Investigation
Methodology
Supervision
Validation
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine
Dmytro
Prysiazhnuk
a_vot_i_pdv@ukr.net
Philosophy doctor
Academician Kukhar Str. 1, Kyiv-94, 02094, Ukraine
Formal Analysis
Methodology
Supervision
Validation
Writing – Review & Editing
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine
References

[1] Cabré, A., Verdaguer, X., & Riera, A. (2019). Enantioselective synthesis of β-methyl amines via iridium-catalyzed asymmetric hydrogenation of N-sulfonyl allyl amines. Advanced Synthesis & Catalysis, 361(18), 4196–4200. DOI: 10.1002/adsc.201900748

[2] Lin, G.-Q., Zhang, J.-G., & Cheng, J.-F. (2011). Overview of chirality and chiral drugs. In Chiral Drugs (pp. 3–28). John Wiley & Sons, Inc.

[3] Ramesh, P., Suman, D., & Reddy, K. (2018). Asymmetric Synthetic Strategies of (R)-(–)-Baclofen: An Antispastic Drug. Synthesis, 50, 211–226. DOI: 10.1055/s-0036-1590938

[4] Smilovic, I. G., Cluzeau, J., Richter, F., Nerdinger, S., Schreiner, E., Laus, G., & Schottenberger, H. (2018). Synthesis of enantiopure antiobesity drug lorcaserin. Bioorganic Medical Chemistry, 26(9), 2686–2690. DOI: 10.1016/j.bmc.2018.02.038

[5] Ornstein, P. L., Zimmerman, D. M., Arnold, M. B., Bleisch, T. J., Cantrell, B., Simon, R., Zarrinmayeh, H., Baker, S. R., Gates, M., Tizzano, J. P., Bleakman, D., Mandelzys, A., Jarvie, K. R., Ho, K., Deverill, M., & Kamboj, R. K. (2000). Biarylpropylsulfonamides as Novel, Potent Potentiators of 2-Amino-3-(5-methyl-3-hydroxyisoxazol-4-yl)-propanoic Acid (AMPA) Receptors. Journal Medical Chemistry, 43(23), 4354–4358. DOI: 10.1021/jm0002836

[6] Moe, S. T., Shimizu, S. M., Smith, D. L., Van Wagenen, B. C., DelMar, E. G., Balandrin, M. F., Chien, Y., Raszkiewicz, J. L., Artman L. D., Mueller, A. L., Lobkovsky, E., & Clardy, J. (2000). Synthesis, biological activity, and absolute stereochemical assignment of NPS 1392: a potent and stereoselective NMDA receptor antagonist. Bioorganic & Medicinal Chemistry Letters, 9(14), 1915–1920. DOI: 10.1016/S0960-894X(99)00317-0

[7] Zhang, J., Liu, C., Wang, X., Chen, J., Zhang, Z., & Zhang, W. (2018). Rhodium-Catalyzed Asymmetric Hydrogenation of β-Branched Enamides for the Synthesis of β-Stereogenic Amines. Chemical Communication, 54, 6024–6027. DOI: 10.1039/C8CC02798F

[8] Meng, J., Li, X.-H., & Han, Zh.-Y. (2017). Enantioselective Hydroaminomethylation of Olefins Enabled by Rh/Brønsted Acid Relay Catalysis. Organic Letters, 19(5), 1076–1079. DOI: 10.1021/acs.orglett.7b00100

[9] Yilmaz, H., Topal, G., Cakmak, R., & Hosgoren, H. (2010). Resolution of (6)-β-Methylphenylethylamine by a Novel Chiral Stationary Phase for Pirkle-Type Column Chromatography. Chirality, 22(2), 252–257. DOI: 10.1002/chir.20736

[10] Maa, M., Feng, W., Guo, F., Yang, Ch., & Xia, W. (2012). Photochemical studies on acyclic alkyl aromatic ketones in the solid state: asymmetric induction and increased chemoselectivity. Tetrahedron, 68(43), 8875–8879. DOI: 10.1016/j.tet.2012.08.040

[11] Hebeisen, P., Weiss, U., Alker, A., & Staempfli, A. (2011). Ring opening of cyclic sulfamidates with bromophenyl metal reagents: complementarity of sulfamidates and aziridines. Tetrahedron Letters, 52(41), 5229–5233. DOI: 10.1016/j.tetlet.2011.07.123

[12] Fuchs, C. S., Hollauf, M., Meissner, M., Simon, R. C., Besset, B., Reek, J. N.-H., Riethorst, W., Zepeck, F., & Kroutilb, W. (2014). Dynamic Kinetic Resolution of 2-Phenylpropanal Derivatives to Yield β-Chiral Primary Amines via Bioamination. Advanced Synthesis & Catalysis, 356(10), 2257–2265. DOI: 10.1002/adsc.201400217

[13] Deasy, R. E., Brossat, M., Moody, T. S., & Maguire, A. R. (2011). Lipase catalysed kinetic resolutions of 3-aryl alkanoic acids. Tetrahedron Asymmetry, 22(1), 47–61. DOI: 10.1016/j.tetasy.2010.12.019

[14] Kolodiazhnyi, O. I., Kolodiazhna, A. O., Faiziiev, O., & Gurova, Y. (2024). Enzymatic Deracemization of Fluorinated Arylcarboxylic Acids: Chiral Enzymatic Analysis and Absolute Stereochemistry Using Chiral HPLC. Symmetry, 16(9), 1150. DOI: 10.3390/sym16091150

[15] Kolodiazhna, А. О., Faiziiev, О. О., & Kolodiazhnyi, О. І. (2023). Fermentative Kinetic Deracemization of Fluorinated 3-Arylalkanoic Acids. Dopovidi NAN Ukrainy, 5, 37–46. DOI: 10.15407/dopovidi2023.05.037

[16] Kolodiazhna, А. О., & Faiziiev, О. О. (2023). Fluorine-Containing 3-Arylalkanoic Acids. In A. I. Vovka (Ed.), Bioaktyvni spoluky, novi rechovyny i materialy (pp. 66–72). Interservis.