By combining fluorescence titration with molecular docking, we discovered that dodecyl fatty acid-modified 3HF-C11COOH interacts strongly with β-cyclodextrin (β-CD). However, its insertion mode differs from that of unsubstituted 3HF. The β-CD-encapsulated 3HF-C11COOH adopts an unfavourable conformation for excited-state intramolecular proton transfer (ESIPT), as the intramolecular hydrogen bonding is partially disrupted.
[1] Szymczak, J., & Cielecka-Piontek, J. (2023). Fisetin – in search of better bioavailability – from macro to nano modifications: A review. International Journal of Molecular Sciences, 24(18). DOI: 10.3390/ijms241814158.
[2] Santos, F. S., Ramasamy, E., Ramamurthy, V., & Rodembusch, F. S. (2014). Excited state chemistry of flavone derivatives in a confined medium: ESIPT emission in aqueous media. Photochemical & Photobiological Sciences, 13(7), 992–996. DOI: 10.1039/c4pp00096j.
[3] Banerjee, A., & Sengupta, P. K. (2006). Encapsulation of 3-hydroxyflavone and fisetin in β-cyclodextrins: Excited state proton transfer fluorescence and molecular mechanics studies. Chemical Physics Letters, 424(4), 379–386. DOI: 10.1016/j.cplett.2006.05.006.
[4] Li, X.-L., Yu, S., Chen, M.-N., Jiang, M., Wang, R.-Z., & Xing, L.-B. (2021). Artificial light-harvesting supramolecular assemblies with controllable fluorescence intensity formed by cyclodextrin-based host–guest complexation. Journal of Photochemistry and Photobiology A: Chemistry, 410, 113182. DOI: 10.1016/j.jphotochem.2021.113182.
[5] Pivovarenko, V. G. (2023). Multi-parametric sensing by multi-channel molecular fluorescent probes based on excited state intramolecular proton transfer and charge transfer processes. BBA Advances, 3, 100094. DOI: 10.1016/j.bbadva.2023.100094.
[6] Kyrychenko, A., & Ladokhin, A. S. (2024). Fluorescent probes and quenchers in studies of protein folding and protein–lipid interactions. Chemical Record, 4(2), e202300232. DOI: 10.1002/tcr.202300232.
[7] Klymchenko, A. S., & Demchenko, A. P. (2004). 3-Hydroxychromone dyes exhibiting excited-state intramolecular proton transfer in water with efficient two-band fluorescence. New Journal of Chemistry, 28(6), 687–692. DOI: 10.1039/B316149H.
[8] Klymchenko, A. S., Kenfack, C., Duportail, G., & Mély, Y. (2007). Effects of polar protic solvents on dual emissions of 3-hydroxychromones. Journal of Chemical Sciences, 119(2), 83–89. DOI: 10.1007/s12039-007-0014-8.
[9] Chepeleva, L. V., Demidov, O. O., Snizhko, A. D., Tarasenko, D. O., Chumak, A. Y., Kolomoitsev, O. O., Kotliar, V. M., Gladkov, E. S., Kyrychenko, A., & Roshal, A. D. (2023). Binding interactions of hydrophobically-modified flavonols with β-glucosidase: fluorescence spectroscopy and molecular modelling study. RSC Advances, 13(48), 34107–34121. DOI: 10.1039/D3RA06276G.
[10] Chepeleva, L. V., Tarasenko, D. O., Chumak, A. Y., Demidov, O. O., Snizhko, A. D., Kolomoitsev, O. O., Kotliar, V. M., Gladkov, E. S., Tatarets, A. L., Kyrychenko, A. V., & Roshal, A. D. (2023). 4’-Benzyloxyflavonol glucoside as fluorescent indicator for β-glucosidase activity. Functional Materials, 30(4), 494–505. DOI: 10.15407/fm30.04.494.
[11] Snizhko, A., Chepeleva, L., Gladkov, E., Roshal, A., & Kyrychenko, A. (2024). Study of the interaction of fluorescent 4'-dodecylcarboxy-3-hydroxyflavone probe with polyvinylpyrrolidone. Proceedings of the Shevchenko Scientific Society. Chemical Sciences, LXXV, 59–65. DOI: 10.37827/ntsh.chem.2024.75.059.
[12] Liu, M., Zhou, W. Y., Jiang, S. Q., Dai, S. P., Wang, Y., Yang, J. J., Chen, Y. W., Chen, J. L., & Park, H. J. (2024). Inclusion complexation of flavonoids with cyclodextrin: Molecular docking and experimental study. ChemistrySelect, 9(36), e202403606. DOI: 10.1002/slct.202403606.
[13] Kerdpol, K., Daengngern, R., Sattayanon, C., Namuangruk, S., Rungrotmongkol, T., Wolschann, P., Kungwan, N., & Hannongbua, S. (2021). Effect of water microsolvation on the excited-state proton transfer of 3-hydroxyflavone enclosed in γ-cyclodextrin. Molecules, 26(4). DOI: 10.3390/molecules26040843.
[14] Goodsell, D. S., Sanner, M. F., Olson, A. J., & Forli, S. (2021). The AutoDock suite at 30. Protein Science, 30(1), 31–43. DOI: 10.1002/pro.3934.
[15] Navarro-Orcajada, S., Matencio, A., Vicente-Herrero, C., García-Carmona, F., & López-Nicolás, J. M. (2021). Study of the fluorescence and interaction between cyclodextrins and neochlorogenic acid, in comparison with chlorogenic acid. Scientific Reports, 11(1), 3275. DOI: 10.1038/s41598-021-82915-9.
[16] Fan, K. W., Luk, H. L., & Phillips, D. L. (2023). Modelling the encapsulation of 3-hydroxyflavone with cyclodextrin and octa acid and comparing their differences. Molecules, 28(9), 3966. DOI: 10.3390/molecules28093966.
[17] Li, D., Xing, Y., Ding, L., Wu, C., Hou, G., & Song, B. (2018). Tuning the emission of a water-soluble 3-hydroxyflavone derivative by host–guest complexation. Soft Matter, 14(21), 4231–4237. DOI: 10.1039/C8SM00349A.