This study explores the complexation of zinc ions by organophosphorus compounds as potential agricultural chelators. Compared to APCA chelators, the results show similar complexation properties, with organophosphorus chelators potentially offering superior biodegradability, highlighting their promise for more sustainable agricultural practices.
[1] P. D. United Nations Department of Economic and Social Affairs, Population Division. (2024). World Population Prospects 2024: Summary of Results.
[2] Kehoe, L., Romero-Muñoz, A., Polaina, E., Estes, L., Kreft, H., & Kuemmerle, T. (2017). Biodiversity at risk under future cropland expansion and intensification. Nature Ecology & Evolution, 1(8), 1129–1135. DOI: 10.1038/s41559-017-0234-3
[3] Tang, J., & Riley, W. J. (2021). Finding Liebig’s law of the minimum. Ecological Applications, 31(8), 1–10. DOI: 10.1002/eap.2458
[4] Zaib, M., Abbas, Q., Hussain, M. S., Mumtaz, S., Khalid, M. U., Raza, I., Abbas, S., Danish, M., Abbas, R., Muhammad, N. G., & Bano, S. (2023). Micronutrients and their significance in agriculture: a mini review with future prospects. International Research Journal of Education and Technology, 5(4), 234–252.
[5] Souri, M. K. (2016). Aminochelate fertilizers: the new approach to the old problem; a review. Open Agriculture, 1(1), 118–123. DOI: 10.1515/opag-2016-0016
[6] Bucheli-Witschel, M., & Egli, T. (2001). Environmental fate and microbial degradation of aminopolycarboxylic acids. FEMS Microbiology Reviews, 25(1), 69–106. DOI: 10.1111/j.1574-6976.2001.tb00572.x
[7] Knepper, T. P. (2003). Synthetic chelating agents and compounds exhibiting complexing properties in the aquatic environment. Trends in Analytical Chemistry, 22(10), 708–724. DOI: 10.1016/S0165-9936(03)01008-2
[8] Hafeez, B., Khanif, Y. M., & Saleem, M. (2013). Role of zinc in plant nutrition – a review. American Journal of Experimental Agriculture, 3(2), 374–391. DOI: 10.9734/AJEA/2013/2746
[9] Nandal, V., & Solanki, M. (2021). Zn as a vital micronutrient in plants. The Journal of Microbiology, Biotechnology and Food Sciences, 11(3), 1–9. DOI: 10.15414/jmbfs.4026
[10] Rudani, K., Patel, V., & Prajapati, K. (2018). The importance of zinc in plant growth – a review. International Research Journal of Natural and Applied Sciences, 5(2), 38–48.
[11] Montalvo, D., Degryse, F., da Silva, R. C., Baird, R., & McLaughlin, M. J. (2016). Agronomic effectiveness of zinc sources as micronutrient fertilizer. In D. L. Sparks (Ed.), Advances in Agronomy (pp. 215–267). Academic Press. DOI: 10.1016/bs.agron.2016.05.004
[12] Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 laying down rules on the making available on the market of EU fertilising products and amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and repealing Regulation (EC) No 2003/2003. ELI: http://data.europa.eu/eli/reg/2019/1009/2024-11-20
[13] Borowiec, M., Hoffmann, K., & Hoffmann, J. (2009). The determination of the degree of zinc complexation by chelating agents with differential pulse voltammetry. International Journal of Environmental and Analytical Chemistry, 89(8), 717–725. DOI: 10.1080/03067310802691672
[14] Klem-Marciniak, E. (2020). EDDHA and EDDHSA micronutrient chelate technology for fertilizing purposes (Doctoral dissertation).