Intelligent Flowmeter Based on the Film Method of Gas Flow Measurement for Environmental Monitoring

Ecology and Sustainable Development. Environmental Protection
pp.
452-458
Abstract

The causes of errors in the measurement of small and micro gas flow rates by the film method are analyzed and measures to minimize them are proposed. An intelligent flow measuring installation with an error of 0.25% in the range of 0...25.0·10 -6 m3/s was developed. The installation for calibration of high-precision flowmeters and gas flow transmitters, gas mixture synthesizers for modern process control systems, including environmental monitoring is designed.

Author (co-authors)
First name Last name Institutional affiliation E-mail Phone number ORCID ID Academic status, position Institution address Author contribution(s) Institutional affiliation
Ivan
Stasiuk
ivan.d.stasiuk@lpnu.ua
12 Stepana Bandery St.
Conceptualization
Writing – Original Draft Preparation
Lviv Polytechnic National University
Ihor
Dilai
divlv@ukr.net
12 Stepana Bandery St.
Methodology
Writing – Original Draft Preparation
Lviv Polytechnic National University
Solomiia
Markiv
solomiia.markiv.av.2022@lpnu.ua
12 Stepana Bandery St.
Data Curation
Validation
Writing – Review & Editing
Lviv Polytechnic National University
Valentyn
Shevchuk
valentyn.v.shevchuk@lpnu.ua
12 Stepana Bandery St.
Investigation
Lviv Polytechnic National University
Oksana
Parneta
ozpatxp@ukr.net
12 Stepana Bandery St.
Formal Analysis
Investigation
Lviv Polytechnic National University
References

[1] The 12th International Gas Analysis Symposium & Exhibition (GAS 2024). (2024). Porte de Versailles, Paris, France. Available at: https://www.gasanalysisevent.com/images/gasanalysis/docs/GAS2024-Fullprogramme.pdf.

[2] GAS Analysis 2022 Conference (GAS 2022). (2022). Paris, France. Available at: https://www.gasanalysisevent.com/programme/2022-programme.

[3] Arseniev, D. G., & Aouf, N. (2023). Cyber-Physical Systems and Control II. Springer. https://link.springer.com/book/10.1007/978-3-031-20875-1.

[4] Teplukh, Z., Dilai, I., Stasiuk, I., Tykhan, M., & Kubara, I.-R. (2018). Design of linear capillary measuring transducers for low gas flow rates. Eastern-European Journal of Enterprise Technologies, 6(5(96)), 25–32. DOI: 10.15587/1729-4061.2018.150526.

[5] Topolnicki, J., Kudasik, M., Skoczylas, N., & Sobczyk, J. (2009). Low cost capillary flow meter. Sensors and Actuators A: Physical, 152(2), 146–150. DOI: 10.1016/j.sna.2009.03.023.

[6] West, T., & Photiou, A. (2018). Measurement of gas volume and gas flow. Anaesthesia & Intensive Care Medicine, 19(4), 183–188. DOI: 10.1016/j.mpaic.2018.02.004.

[7] Lashkari, S., & Kruczek, B. (2008). Development of a fully automated soap flowmeter for micro flow measurements. Flow Measurement and Instrumentation, 19(6), 397–403. DOI: 10.1016/j.flowmeasinst.2008.08.001.

[8] Henderson, M. A., & Runcie, C. (2017). Gas, tubes and flow. Anaesthesia & Intensive Care Medicine, 18(4), 180–184. DOI: 10.1016/j.mpaic.2017.01.009.

[9] OOO-Monitoring. Gas flow meters “STREAM”. Available at: https://www.ooo-monitoring.ru/products/equip/gasflow/potok/.

[10] Dilay, I., Teplukh, Z., Tykhan, M., Stasiuk, I., & Kubara, I.-R. (2017). Effect of external pressures in dynamic gas mixers. Eastern-European Journal of Enterprise Technologies, 4(5-88), 59–65. DOI: 10.15587/1729-4061.2017.26256.

[11] Haerri, H.-P., Mace, T., Walden, J., Pascale, C., Niederhauser, B., Wirtz, K., et al. (2017). Dilution and permeation standards for the generation of NO, NO₂ and SO₂ calibration gas mixtures. Measurement Science and Technology, 28(3), 035801 (17 pp). DOI: 10.1088/1361-6501/aa543d.

[12] Helwig, N., Schüler, M., Bur, C., Schütze, A., & Sauerwald, T. (2014). Gas mixing apparatus for automated gas sensor characterization. Measurement Science and Technology, 25(5), 055903 (9 pp). DOI: 10.1088/0957-0233/25/5/055903.

[13] Słomińska, M., Konieczka, P., & Namieśnik, J. (2014). New developments in preparation and use of standard gas mixture. TrAC Trends in Analytical Chemistry, 62, 135–143. DOI: 10.1016/j.trac.2014.07.013.

[14] Dilay, I., Teplukh, Z., Brylyns'kyy, R., & Kubara, I.-R. (2016). Development of gas dynamic linear systems for setting low pressures. Eastern-European Journal of Enterprise Technologies, 4(7-82), 30–36. DOI: 10.15587/1729-4061.2016.75231.

[15] Dilay, I., Teplukh, Z., & Vashkurak, Y. (2014). Basic throttling schemes of gas mixture synthesis systems. Eastern-European Journal of Enterprise Technologies, 4(8), 39–45. DOI: 10.15587/1729-4061.2014.26257.

[16] Takami, T., Nishimoto, K., Goto, T., Ogawa, S., Iwata, F., & Takakuwa, Y. (2016). Argon gas flow through glass nanopipette. Japanese Journal of Applied Physics, 55(12), 125202. DOI: 10.7567/jjap.55.125202.

[17] Barbe, J., Boineau, F., Macé, T., & Otal, P. (2015). Development of a gas micro-flow transfer standard. Flow Measurement and Instrumentation, 44, 43–50. DOI: 10.1016/j.flowmeasinst.2014.11.011.

[18] Dilay, I., & Teplukh, Z. (2014). Development of throttle selector of significantly different pressures for gas-dynamic tools. Eastern-European Journal of Enterprise Technologies, 6(7), 28–33. DOI: 10.15587/1729-4061.2014.31390.

[19] Ivashchuk, O. (2017). Catalytic intensification of the cyclohexane oxidation. Chemistry & Chemical Technology, 11(4), 430–436. DOI: 10.23939/chcht11.04.430.

[20] Liptak, B. G. (2022). Flow Measurement (1st ed.). CRC Press. https://www.routledge.com/Flow-Measurement/Liptak/p/book/9780801983863.

[21] Levy, A. (1964). The accuracy of the bubble meter method for gas flow measurements. Journal of Scientific Instruments, 41(7), 449–453. DOI: 10.1088/0950-7671/41/7/309.

[22] Udd, E. (2024). Fiber Optic Sensors: An Introduction for Engineers and Scientists (3rd ed.). Wiley. https://www.ravenbookstore.com/book/9781119678786.

[23] Jackson, R. G. (2019). Novel Sensors and Sensing. CRC Press, Taylor & Francis Group. https://www.taylorfrancis.com/books/mono/10.1201/9780429138348/novel-sensors-sensing-roger-jackson.

[24] Fursenko, R. V., & Odintsov, E. S. (2022). A novel concept of automatic soap flowmeter with bubble detection by closing an electrical circuit. Flow Measurement and Instrumentation, 85, 102165 (11 pp). DOI: 10.1016/j.flowmeasinst.2022.102165.

[25] Zhikhua, L., Zhitsyan, Z., Zhen, L., & Li, S. (2022, October). Electronic film flowmeter. CN Patent 217637486 U. https://patents.google.com/patent/CN217637486U/en?oq=CN+Patent+217637486U.

[26] Poling, B. E., & Prausnitz, J. M. (2000). The Properties of Gases and Liquids (5th ed.). McGraw Hill. https://www.ebooks.com/en-us/book/300463/the-properties-of-gases-and-liquids-5e/bruce-e-poling/.

[27] Elliott, J. R. (2023). The Properties of Gases and Liquids (6th ed.). McGraw Hill. https://www.mhprofessional.com/the-properties-of-gases-and-liquids-sixth-edition-9781260116342-usa.

[28] Monk, S. (2022). Raspberry Pi Cookbook: Software and Hardware Problems and Solutions (4th ed.). O'Reilly Media. https://www.oreilly.com/library/view/raspberry-pi-cookbook/9781098130916/.