Studying the Rheological Behaviour of Polyamide Nanocomposites

The Innovations, Nanotechnologies, and Catalysis in the Chemical and Food Industries
pp.
213-216
Abstract

The composition and derivation conditions impact on the rheological behavior of polyamide nanocomposite was researched. The dependence of the nanocomposite flow curves on the channel length, flow velocity, channel geometry parameters and the concentration of the modified filler was determined. It was found that modifying polyamide 6 has a positive effect on the rheological properties, making it possible to regulate the technological and operational characteristics.

Keywords (in English)
Author (co-authors)
First name Last name Institutional affiliation E-mail Phone number ORCID ID Academic status, position Institution address Author contribution(s) Institutional affiliation
Natalia
Chopyk
nataliia.v.chopyk@lpnu.ua
науковий співробітник
Lviv, 12 Bandery st
Writing – Review & Editing
Lviv Polytechnic National University
Viktoriia
Zemke
viktoriia.m.zemke@lpnu.ua
старший науковий співробітник
Lviv, 12 Bandery st
Writing – Original Draft Preparation
Lviv Polytechnic National University
Mykhaylo
Bratychak
mykhailo.my.bratychak@lpnu.ua
доцент
Lviv, 12 Bandery st
Methodology
Lviv Polytechnic National University
References

[1] Krasinskyi, V., Suberlyak, O., Zemke, V., Chekailo, M., & Pankiv, M. (2021). Obtaining of nanocomposites based on montmorillonite and polyamide in solution. Chemistry, Technology and Application of Substances, Bulletin of the Lviv Polytechnic National University, 4(1), 172–178. DOI: 10.23939/ctas2021.01.172.

[2] Mishurov, D. O., Avramenko, V. L., & Brovko, O. O. (2013). Nanocomposites based on polymers and layered silicates. Polymer Journal, 35(3), 217–230. [Online]. Available: http://nbuv.gov.ua/UJRN/Polimer_2013_35_3_4

[3] Krasinskyi, V., Suberlyak, O., Kochubei, V., Jachowicz, T., Dulebova, L., & Zemke, V. (2020). Nanocomposites based on polyamide and montmorillonite obtained from a solution. Advanced Science and Technology Research Journal, 14(3), 192–198. DOI: 10.12913/22998624/122297.

[4] Levytskyi, V., Masyuk, A., Katruk, D., Kuzioła, R., Bratychak, M. jr., Chopyk, N., & Khromyak, U. (2020). Influence of polymer-silicate nucleator on the structure and properties of polyamide 6. Chemistry & Chemical Technology, 14(4), 496–503. DOI: 10.23939/chcht14.04.496.

[5] Novodvorskyi, V., Ivanitsky, G., & Shved, N. (2023). Numerical study of the non-isothermal flow of the polymer melt with undermelted granules in the conical annular channel of a disc extruder. Collection of Scientific Works of the Ukrainian State University of Railway Transport, 205, 37–50. DOI: 10.18664/1994-7852.205.2023.288816.

[6] Plastics. Determination of the melt mass-flow rate (MFR) and melt volume-flow rate (MVR) of thermoplastics – Part 1: Standard method (ISO 1133-1:2022(E)). (2022). [Online]. Available: https://www.iso.org/standard/83905.html

[7] Chiang, D. K. (1976). Rheology in polymer processing processes. New York: Academic Press. p. 368. [Online]. Available: https://libcats.org/book/669771

[8] Kuzmov, A. (2023). Theoretical principles of micromechanical averaging of linear viscous flow of a porous material with capillary stresses on the pore surface. Scientific Notes, 76, 42–48. DOI: 10.36910/775.24153966.2023.76.6.