The powder recyclate was obtained through the mechanical processing of GRP waste (pipes,wind turbine blades). Currently, there are no specific quality requirements or standards for such secondary material due to the lack of its large scale usage. However, pending regulations dedicated to the secondary markets, it is necessary to develop facilitate the potential introduction of the material on an industrial scale. The recyclate was analyzed using gas chromatography (GC), high-performance liquid chromatography (HPLC), and Fourier-transform infrared spectroscopy (FTIR).
[1] Fu, Y., & Yao, X. (2022). A review on manufacturing defects and their detection of fiber reinforced resin matrix composites. Composites Part C: Open Access, 8, 100276. DOI: 10.1016/j.jcomc.2022.100276
[2] Feng, Y., Zhang, Z., Yue, D., Belko, V. O., Maksimenko, S. A., Deng, J., Sun, Y., Yang, Z., Fu, Q., Liu, B., & Chen, Q. (2024). Recent progress in degradation and recycling of epoxy resin. Journal of Materials Research and Technology, 32, 2891–2912. DOI: 10.1016/j.jmrt.2024.08.095
[3] Liu, P., & Barlow, C. Y. (2017). Wind turbine blade waste in 2050. Waste Management, 62, 229–240. DOI: 10.1016/j.wasman.2017.02.007
[4] Schwarz, A. E., Ligthart, T. N., Bizarro, D. G., De Wild, P., Vreugdenhil, B., & van Harmelen, T. (2021). Plastic recycling in a circular economy; determining environmental performance through an LCA matrix model approach. Waste Management, 121, 331–342. DOI: 10.1016/j.wasman.2020.12.020
[5] Qureshi, J. (2022). A review of recycling methods for fibre reinforced polymer composites. Sustainability, 14(24), 16855. DOI: 10.3390/su142416855
[6] Mishnaevsky, L., Jr., Branner, K., Petersen, H. N., Beauson, J., McGugan, M., & Sørensen, B. F. (2017). Materials for wind turbine blades: An overview. Materials, 10(11), 1285. DOI: 10.3390/ma10111285
[7] Delaney, E. L., Leahy, P. G., McKinley, J. M., Gentry, T. R., Nagle, A. J., Elberling, J., & Bank, L. C. (2023). Sustainability implications of current approaches to end-of-life of wind turbine blades–A review. Sustainability, 15(16), 12557. DOI: 10.3390/su151612557
[8] WindEurope. (2023, March 15). Wind industry calls for Europe-wide ban on landfilling turbine blades. https://windeurope.org/newsroom/press-releases/wind-industry-calls-for-europe-wide-ban-on-landfilling-turbine-blades/
[9] Summerscales, J., Geraghty, R., Graham-Jones, J., Pemberton, R., & Bray, S. (2025). Sustainability considerations for end-of-life fibre-reinforced plastic boats. Regional Studies in Marine Science, 83, 104054. DOI: 10.1016/j.rsma.2025.104054
[10] Okpuwhara, R. O., Oboirien, B. O., Sadiku, E. R., Ray, S. S., & Akinlabi, S. A. (2020). The use of ecofriendly recycled polymer composites in boat building. In O. V. Kharissova, L. M. T. Martínez, & B. I. Kharisov (Eds.), Handbook of nanomaterials and nanocomposites for energy and environmental applications (pp. 3707–3732). Springer International Publishing. DOI: 10.1007/978-3-030-36268-3_168
[11] Couvreur, R., Tamrakar, S., Savich, P., Mielewski, D., & Kiziltas, A. (2022). Closed-loop recycling of thermoset composites from electric motor assembly process into flexible polyurethane foams. Polymer Composites, 43(10), 8105–8115. DOI: 10.1002/pc.26561
[12] Dorigato, A. (2021). Recycling of thermosetting composites for wind blade application. Advanced Industrial and Engineering Polymer Research, 4(2), 116–132. DOI: 10.25101/aiiepr.2021.52
[13] Haider, M. M., Nassiri, S., Englund, K., Li, H., & Chen, Z. (2021). Exploratory study of flexural performance of mechanically recycled glass fiber reinforced polymer shreds as reinforcement in cement mortar. Transportation Research Record, 2675(1), 1254–1267. DOI: 10.1177/03611981211007734
[14] Rahimizadeh, A., Kalma, J., Henri, R., Fayazbakhsh, K., & Lessard, L. (2019). Recycled glass fiber composites from wind turbine waste for 3D printing feedstock: Effects of fiber content and interface on mechanical performance. Materials, 12(10), 1629. DOI: 10.3390/ma12101629
[15] Zhang, G., Tian, C., Feng, H., Tan, T., Wang, R., & Zhang, L. (2022). Thermal reprocessing and closed-loop chemical recycling of styrene-butadiene rubber enabled by exchangeable and cleavable acetal linkages. Macromolecular Rapid Communications, 43(5), 2100606. DOI: 10.1002/marc.202100606
[16] Jani, P. K., Farias, B. V., Jain, R. K., Houston, K. R., Velev, O. D., Santiso, E. E., Hsiao, L. C., & Khan, S. A. (2024). Isothermal titration calorimetry reveals entropy-driven bisphenol A epoxy resin adhesion to metal oxide surfaces. Macromolecules, 57(5), 2130–2141. DOI: 10.1021/acs.macromol.3c02440